-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path01_Replicate-traditional-workflow.py
261 lines (193 loc) · 7.62 KB
/
01_Replicate-traditional-workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Databricks notebook source
# MAGIC %md
# MAGIC # DSML Overview session
# MAGIC
# MAGIC ### Replicating a traditional ML workflow in Databricks
# COMMAND ----------
# MAGIC %md
# MAGIC # Reading data into Spark
# MAGIC
# MAGIC 1. Using Spark's native file readers for csv, json, parquet and Delta
# MAGIC 2. Different paths to accessing a dataset
# COMMAND ----------
# DBTITLE 1,Read from .csv file (schema unknown)
display(spark.read.csv("/databricks-datasets/samples/population-vs-price/data_geo.csv", header=True, inferSchema=True))
# COMMAND ----------
# DBTITLE 1,Read from .csv file (known schema)
display(
spark.read
.schema("`2014 rank` int,`City` string,`State` string,`State Code` string,`2014 Population estimate` long,`2015 median sales price` float")
.csv("/databricks-datasets/samples/population-vs-price/data_geo.csv", header=True)
)
# COMMAND ----------
# MAGIC %fs head /databricks-datasets/samples/people/people.json
# COMMAND ----------
# DBTITLE 1,Read a .json file (row per observation)
display(
spark.read
.json("/databricks-datasets/samples/people/", multiLine=True)
)
# COMMAND ----------
# MAGIC %fs mounts
# COMMAND ----------
# DBTITLE 1,Read delta table from S3
display(
spark.read
.format("delta")
.load("/home/stuart/datasets/covid/timeseries") # could also be s3a:// url
)
# COMMAND ----------
# DBTITLE 1,Register table in workspace catalogue and access using spark.table()
# MAGIC %sql
# MAGIC drop table if exists covid.timeseries;
# MAGIC create table covid.timeseries
# MAGIC using delta
# MAGIC location '/home/stuart/datasets/covid/timeseries'
# COMMAND ----------
display(
spark.table("covid.timeseries")
)
# COMMAND ----------
# MAGIC %sql
# MAGIC select *
# MAGIC from covid.timeseries
# MAGIC where Country_Region = "United Kingdom"
# COMMAND ----------
# MAGIC %md
# MAGIC ## Machine Learning workflow on Databricks
# MAGIC ### A 'hello world' example
# COMMAND ----------
# DBTITLE 1,Read parquet into Spark DataFrame
df = (
spark.read
.format("parquet")
.load("/databricks-datasets/samples/lending_club/parquet")
)
display(df)
# COMMAND ----------
# DBTITLE 1,Clean data using PySpark SQL API
from pyspark.sql.functions import *
# subset columns with DataFrame.select()
df = df.select(
"purpose", "loan_status", "int_rate", "revol_util", "issue_d",
"earliest_cr_line", "emp_length", "verification_status", "total_pymnt",
"loan_amnt", "grade", "annual_inc", "dti", "addr_state", "term",
"home_ownership", "application_type", "delinq_2yrs", "total_acc"
)
# subset rows with DataFrame.filter() or .where()
# refer to columns using col() function or SparkDataFrame.<<column_name>> notation
print("------------------------------------------------------------------------------------------------")
print("Create bad loan label, this will include charged off, defaulted, and late repayments on loans...")
df = (
df
.filter(col("loan_status").isin(["Default", "Charged Off", "Fully Paid"]))
.withColumn("bad_loan", (~(df.loan_status == "Fully Paid")).cast("string"))
)
# create new derived columns with DataFrame.withColumn()
print("------------------------------------------------------------------------------------------------")
print("Turning string interest rate and revoling util columns into numeric columns...")
df = (
df.withColumn('int_rate', regexp_replace('int_rate', '%', '').cast('float'))
.withColumn('revol_util', regexp_replace('revol_util', '%', '').cast('float'))
.withColumn('issue_year', substring(df.issue_d, 5, 4).cast('double') )
.withColumn('earliest_year', substring(df.earliest_cr_line, 5, 4).cast('double'))
.withColumn('credit_length_in_years', col("issue_year") - col("earliest_year"))
)
print("------------------------------------------------------------------------------------------------")
print("Converting emp_length column into numeric...")
df = df.withColumn('emp_length', trim(regexp_replace(df.emp_length, "([ ]*+[a-zA-Z].*)|(n/a)", "") ))
df = df.withColumn('emp_length', trim(regexp_replace(df.emp_length, "< 1", "0") ))
df = df.withColumn('emp_length', trim(regexp_replace(df.emp_length, "10\\+", "10") ).cast('float'))
print("------------------------------------------------------------------------------------------------")
print("Map multiple levels into one factor level for verification_status...")
df = df.withColumn('verification_status', trim(regexp_replace(df.verification_status, 'Source Verified', 'Verified')))
print("------------------------------------------------------------------------------------------------")
print("Calculate the total amount of money earned or lost per loan...")
df = df.withColumn('net', round( df.total_pymnt - df.loan_amnt, 2))
display(df)
# COMMAND ----------
# DBTITLE 1,Save this cleaned dataframe as a new Delta table on S3 and register in metastore
df.createOrReplaceTempView("lending_club_cleaned")
# COMMAND ----------
# MAGIC %sql
# MAGIC create database if not exists lending_club;
# MAGIC use lending_club;
# COMMAND ----------
# MAGIC %sql
# MAGIC select *
# MAGIC from lending_club_cleaned
# MAGIC limit 5
# COMMAND ----------
(
df.write
.format("delta")
.mode("overwrite")
.partitionBy("issue_d")
.saveAsTable(name="lending_club.cleaned", path="/home/stuart/datasets/lending_club/cleaned")
)
df = spark.table("lending_club.cleaned")
# COMMAND ----------
# DBTITLE 1,Visualise distribution of loan amount
display(df)
# COMMAND ----------
# DBTITLE 1,Assign target and predictor columns
predictors = [
"purpose", "term", "home_ownership", "addr_state", "verification_status",
"application_type", "loan_amnt", "emp_length", "annual_inc", "dti",
"delinq_2yrs", "revol_util", "total_acc", "credit_length_in_years",
"int_rate", "net", "issue_year"
]
target = 'bad_loan'
# COMMAND ----------
# DBTITLE 1,Prepare training and test sets
from sklearn.model_selection import train_test_split
# collect Spark DataFrame to a Pandas DataFrame local to driver node using SparkDataFrame.toPandas()
pdDf = df.toPandas()
for col in pdDf.columns:
if pdDf.dtypes[col]=='object':
pdDf[col] = pdDf[col].astype('category').cat.codes
pdDf[col] = pdDf[col].fillna(0)
X_train, X_test, Y_train, Y_test = train_test_split(pdDf[predictors], pdDf[target], test_size=0.2)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Train model
# COMMAND ----------
# DBTITLE 1,Train RandomForest
from sklearn.ensemble import RandomForestClassifier
params = {
"n_estimators": 5,
"max_depth": 5,
"random_state": 42
}
rf = RandomForestClassifier(**params)
rf.fit(X_train, Y_train)
# COMMAND ----------
# DBTITLE 1,Evaluate on holdout
from sklearn.metrics import roc_auc_score, accuracy_score, mean_squared_error, mean_absolute_error, r2_score
predictions = rf.predict(X_test)
acc = accuracy_score(Y_test, predictions)
roc = roc_auc_score(Y_test, predictions)
mse = mean_squared_error(Y_test, predictions)
mae = mean_absolute_error(Y_test, predictions)
r2 = r2_score(Y_test, predictions)
print(" acc: {}".format(acc))
print(" roc: {}".format(roc))
print(" mse: {}".format(mse))
print(" mae: {}".format(mae))
print(" R2 : {}".format(r2))
# COMMAND ----------
# DBTITLE 1,Extract feature importance
import pandas as pd
importance = pd.DataFrame(list(zip(df.columns, rf.feature_importances_)),
columns=["Feature", "Importance"]
).sort_values("Importance", ascending=False)
print(importance)
# COMMAND ----------
# DBTITLE 1,(for later use) Save the modified training data to a delta table
(
spark.createDataFrame(pdDf).write
.format("delta")
.mode("overwrite")
.saveAsTable(name="lending_club.model_test", path="/home/stuart/datasets/lending_club/model_test")
)
# COMMAND ----------