-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
366 lines (327 loc) · 12.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import torch
import lightning as L
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torchvision.datasets import CIFAR10
from torchvision.datasets import CIFAR100
from torchvision.datasets import FakeData
from torchvision.datasets import ImageFolder
from torchvision.transforms import Resize
from torchvision.transforms import Compose
from torchvision.transforms import ToTensor
from torchvision.transforms import Normalize
from torchvision.transforms import CenterCrop
from torchvision.transforms import RandomCrop
from torchvision.transforms import RandomResizedCrop
from torchvision.transforms import RandomHorizontalFlip
@torch.no_grad()
def accuracy(result, answer, topk=1):
r'''
result (batch_size, class_cnt)
answer (batch_size)
'''
#save the batch size before tensor mangling
bz = answer.size(0)
#ignore result values. its indices: (sz,cnt) -> (sz,topk)
values, indices = result.topk(topk)
#transpose the k best indice
result = indices.t() #(sz,topk) -> (topk, sz)
#repeat same labels topk times to match result's shape
answer = answer.view(1, -1) #(sz) -> (1,sz)
answer = answer.expand_as(result) #(1,sz) -> (topk,sz)
correct = (result == answer) #(topk,sz) of bool vals
correct = correct.flatten() #(topk*sz) of bool vals
correct = correct.float() #(topk*sz) of 1s or 0s
correct = correct.sum() #counts 1s (correct guesses)
correct = correct.mul_(100/bz) #convert into percentage
return correct.item()
class AverageMeter(object):
"""
@purpose: track average, sum, count, and most recent value.
@params : N/A.
@return : state. maintains mean, sum, count, and newest
value.
"""
def __init__(self):
self.reset();
def reset(self):
self.val = 0;
self.avg = 0;
self.sum = 0;
self.count = 0;
def update(self, val, n=1):
self.val = val;
self.sum += val * n;
self.count += n;
self.avg = self.sum / self.count;
class CachedDataset(torch.utils.data.Dataset):
def __init__():
self.path = path
self.preload_images = preload_images
self.data = json.load(open(path, 'r'))
self.keys = list(self.data.keys())
if self.preload_images:
self.images = []
for k in self.keys:
self.images.append(Image.open(k).convert("RBG"))
def __len__(self,):
return len(self.keys)
def __getitem__(self, idx):
if self.preload_images:
image = self.images[idx]
else:
image = Image.open(self.keys[idx]).convert("RGB")
def save_checkpoint(loss,
acc,
epoch,
fabric,
model,
optimizer,
scheduler,
pathname):
"""
@purpose: save whole model, and its hyperparameters.
@params:
- epoch : epochs trained.
- acc : best top-1 accuracy so far.
- loss : best loss so far.
- model : model parameters.
- optimizer: optimizer parameters.
- scheduler: scheduler parameters.
- pathname : saving directory path, suffixed with the
hyperparameters.
#return: pickle serialized object, saved on disk.
"""
state = {'loss' : loss ,
'acc' : acc ,
'epoch' : epoch ,
'model' : model.state_dict() ,
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler}
extension = "" if ".zip" in pathname else "_best.zip"
fabric.save(state, pathname + extension)
def transform(args,
train:bool):
if "cifar" in args.dataset.lower():
if args.dataset.lower() == "cifar10":
std = [0.247,0.244,0.262]
mean = [0.491,0.482,0.447]
else:
std = [0.268,0.257,0.276]
mean = [0.507,0.487,0.441]
if train:
transform = Compose([ToTensor(),
RandomHorizontalFlip(),
RandomCrop(32, padding=4),
Normalize(std=std,mean=mean)])
else:
transform = Compose([ToTensor(),
Normalize(std=std,mean=mean)])
elif "imagenet1k" in args.dataset.lower():
std = [0.229,0.224,0.225]
mean = [0.485,0.456,0.406]
if train:
transform = Compose([ToTensor(),
RandomHorizontalFlip(),
RandomResizedCrop(224,antialias=True),
Normalize(std=std,mean=mean)])
else:
transform = Compose([ToTensor(),
Resize(256),
CenterCrop(224),
Normalize(std=std,mean=mean)])
elif args.dataset.lower() == "fake":
std = [0.229,0.224,0.225]
mean = [0.485,0.456,0.406]
if train:
transform = Compose([ToTensor(),
RandomHorizontalFlip(),
RandomResizedCrop(224,antialias=True),
Normalize(std=std,mean=mean)])
else:
transform = Compose([ToTensor(),
Resize(256),
CenterCrop(224),
Normalize(std=std,mean=mean)])
else:
assert False
return transform
def load_data(args,
is_train:bool):
if args.dataset.lower() == "cifar10":
if is_train:
dataindex = CIFAR10(root=args.datadir,
train=True,
download=True,
transform=transform(args,True))
trainindex, validindex = random_split(dataindex, \
[args.trainratio, args.validratio])
else:
testindex = CIFAR10(root=args.datadir,
train=False,
download=True,
transform=transform(args,False))
elif args.dataset.lower() == "cifar100":
if is_train:
dataindex = CIFAR100(root=args.datadir,
train=True,
download=True,
transform=transform(args,True))
trainindex, validindex = random_split(dataindex, \
[args.trainratio, args.validratio])
else:
testindex= CIFAR100(root=args.datadir,
train=False,
download=True,
transform=transform(args,False))
elif args.dataset.lower() == "imagenet1k":
if is_train:
trainindex = ImageFolder(args.datadir + "train")
validindex = ImageFolder(args.datadir + "val")
else:
testindex = ImageFolder(args.datadir + "val")
#testindex = ImageFolder(args.datadir + "test")
elif args.dataset.lower() == "fake":
if is_train:
trainindex = FakeData(1281167, (3, 224, 224), 1000)
validindex = FakeData(50000, (3, 224, 224), 1000)
else:
testindex = FakeData(100000, (3, 224, 224), 1000)
else:
assert False
if is_train:
trainindex.transform = transform(args,True)
validindex.transform = transform(args,False)
dataloader = (DataLoader(trainindex,
shuffle=True,
batch_size=args.batchsize,
num_workers=args.workers,
persistent_workers=True,
pin_memory=True),
DataLoader(validindex,
shuffle=False,
batch_size=args.batchsize,
num_workers=args.workers,
persistent_workers=True,
pin_memory=True))
else:
testindex.transform = transform(args,False)
dataloader = DataLoader(testindex,
shuffle=False,
batch_size=args.batchsize,
num_workers=args.workers,
persistent_workers=True,
pin_memory=True)
return dataloader
def trainval(model ,
fabric ,
optimizer ,
scheduler ,
validloader,
trainloader,
batchsize ,
trainsize ,
iterations ,
modelfile ,
device ,
logger ,
printfreq):
"""
@purpose: optimize weights over train data.
@params :
- trainloader: trainset image tensors.
- model : initialized model.
- criterion : loss fn.
- optimizer : model update algo.
"""
best_acc = float("-inf")
best_loss = float("inf")
stalled = 0
top1 = AverageMeter()
top5 = AverageMeter()
losses = AverageMeter()
model.train()
logger.info("Train:")
for batchidx in range(1, iterations+1):
#zero gradient buffers batch
optimizer.zero_grad()
#send batch to compute device [CPU, TPU, etc]
images, targets = next(iter(trainloader))
#get predictions
#results = model(images.half())
results = model(images)
#calc loss using predictions & truth
loss = F.cross_entropy(results, targets)
#backprop loss gradient through model
fabric.backward(loss)
#update the model weights
optimizer.step()
#reduce learning rate (if scheduler conditions are met)
scheduler.step()
t1 = accuracy(results, targets, 1)
t5 = accuracy(results, targets, 5)
top1.update(t1, images.size(0))
top5.update(t5, images.size(0))
losses.update(loss.item(), images.size(0))
if batchidx%printfreq==0:
epoch = batchidx//trainsize
s = (f'\titer [{epoch}][{batchidx}/{iterations}]'
f'\tloss [{losses.val:.4f} ({losses.avg:.4f})]'
f'\ttop1 [{top1.val:.2f} ({top1.avg:.2f})]'
f'\ttop5 [{top5.val:.2f} ({top5.avg:.2f})]')
logger.info(s)
if batchidx%trainsize==0:
vaccuracy, vloss = test(dataloader = validloader,
model = model,
criterion = criterion,
logger = logger,
device = device)
logger.info("Valid:")
s = (f'\tloss ({vloss:.4f})'
f'\ttop1 ({vaccuracy[0]:.2f})'
f'\ttop5 ({vaccuracy[1]:.2f})')
logger.info(s)
logger.info("Train:")
isbest = vloss < best_loss
if isbest:
stalled = 0
best_acc = vaccuracy
save_checkpoint(vloss,
vaccuracy,
batchidx//trainsize,
fabric,
model,
optimizer,
scheduler,
modelfile)
return vaccuracy, vloss
@torch.inference_mode()
def test(dataloader,
model,
logger,
device):
"""
@purpose: loss and accuracy on testset. gradients frozen.
@params :
- (torch.utils) testloader : testset image tensors.
- (torch.nn) model : initialized model.
- (torch.nn) criterion : loss fn.
- (torch.optim) optimizer : model update algo.
- (int) epoch :
"""
top1 = AverageMeter()
top5 = AverageMeter()
losses = AverageMeter()
model.eval()
for idx, (images, targets) in enumerate(dataloader):
results = model(images)
loss = F.cross_entropy(results, targets)
t1 = accuracy(results, targets, 1)
t5 = accuracy(results, targets, 5)
top1.update(t1, images.size(0))
top5.update(t5, images.size(0))
losses.update(loss.item(), images.size(0))
model.train()
return (top1.avg,top5.avg), losses.avg