-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbacktest.py
266 lines (228 loc) · 12 KB
/
backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import yfinance as yf
from yfinance import Ticker
from typing import *
import pandas as pd
from pandas import DataFrame
from datetime import datetime
from typing import TYPE_CHECKING
from pyBacktest.trades import execute_buy, execute_sell, execute_market_buy, execute_market_sell, execute_short_sell, execute_short_cover
from pyBacktest.tradeTypes import TradeType, Holding, Order, InvalidOrderError
from pyBacktest.commissions import calculate_commission
from pyBacktest.orders import cancel_order, submit_gtc_order
from pyBacktest.utils import calculateVaR
from pyBacktest.results import BacktestResult
from dataclasses import dataclass
if TYPE_CHECKING:
from pyBacktest.strategy import Strategy
class Backtest:
def __init__(
self,
ticker: str,
cash: float | int,
strategy: 'Strategy',
commision: float | int = 0.0,
commisionType: str = "FLAT",
timePeriod: str = "1mo",
interval: str = "1d",
startDate: datetime = datetime(2024, 1, 1),
endDate: datetime = datetime(2024, 2, 1),
) -> None:
self.ticker: str = ticker.upper()
self.commision: float = commision
self.commisionType: float = commisionType
self.timePeriod: str = timePeriod
interval_value = int(interval[:-1])
interval_unit = interval[-1]
self.interval = pd.DateOffset(
minutes=interval_value if interval_unit == "m" else 0,
hours=interval_value if interval_unit == "h" else 0,
days=interval_value if interval_unit == "d" else 0,
weeks=interval_value if interval_unit == "w" else 0,
months=interval_value if interval_unit == "mo" else 0,
)
self.date = pd.Timestamp(startDate).tz_localize("America/New_York")
self.endDate = pd.Timestamp(endDate).tz_localize("America/New_York")
self.data: Ticker = yf.Ticker(self.ticker)
self.hist: DataFrame = self.data.history(
start=self.date, end=self.endDate, interval=interval
)
self.transactions: List[Holding] = []
self.cash: float = cash
self.holdings: List[Holding] = []
self.pending_orders: List[Order] = []
self.strategy = strategy
self.strategy.initialize(self)
def getValidDate(self, target_date: pd.Timestamp) -> pd.Timestamp:
if target_date in self.hist.index:
return target_date
return self.hist.index[
self.hist.index.get_indexer([target_date], method="nearest")[0]
]
def formatDate(self, date: datetime) -> pd.Timestamp:
if not isinstance(date, pd.Timestamp):
date = pd.Timestamp(date)
if date.tz is None:
date = date.tz_localize("America/New_York")
return self.getValidDate(date)
def calculateCommision(self, price: float, numShares: int) -> float:
return calculate_commission(self.commisionType, self.commision, price, numShares)
def cancelOrder(self, order_index: int) -> bool:
return cancel_order(self, order_index)
def submitGTCOrder(self, tradeType: TradeType, numShares: int, targetPrice: float) -> Order:
return submit_gtc_order(self, tradeType, numShares, targetPrice)
def calculate_trade_cost(self, tradeType: TradeType, numShares: int, price: float = None) -> float:
validDate = self.formatDate(self.date)
current_price = price if price is not None else self.hist.loc[validDate].Close
if tradeType in [TradeType.BUY, TradeType.MARKET_BUY, TradeType.LIMIT_BUY]:
commission = self.calculateCommision(current_price, numShares)
total_cost = numShares * current_price + commission
elif tradeType in [TradeType.SELL, TradeType.MARKET_SELL, TradeType.LIMIT_SELL, TradeType.SHORT_COVER]:
commission = self.calculateCommision(current_price, numShares)
total_cost = numShares * current_price - commission
elif tradeType == TradeType.SHORT_SELL:
commission = self.calculateCommision(current_price, numShares)
total_cost = numShares * current_price - commission
else:
raise InvalidOrderError(f"Unsupported trade type: {tradeType}")
return total_cost
def _check_pending_orders(self, current_price: float):
for order in self.pending_orders[:]: # Use slice copy to modify safely
if not order.active:
self.pending_orders.remove(order)
continue
# Cancel DAY orders that have expired
if order.duration == 'DAY' and order.orderDate < self.date:
order.active = False
self.cancelOrder(self.pending_orders.index(order))
continue
try:
executed = False
if order.tradeType == TradeType.LIMIT_BUY and current_price <= order.targetPrice:
result = self._execute_buy(order.targetPrice, order.numShares, self.date, TradeType.LIMIT_BUY)
executed = True
elif order.tradeType == TradeType.LIMIT_SELL and current_price >= order.targetPrice:
result = self._execute_sell(order.targetPrice, order.numShares, self.date, TradeType.LIMIT_SELL)
executed = True
if executed:
order.active = False
self.pending_orders.remove(order)
if hasattr(self.strategy, 'on_order_filled'):
self.strategy.on_order_filled(order)
except Exception as e:
print(f"Order execution error: {e}")
order.active = False
self.pending_orders.remove(order)
def next(self):
self.date += self.interval
valid_date = self.getValidDate(self.date)
current_price = self.hist.loc[valid_date].Close
self._check_pending_orders(current_price)
row = self.hist.loc[valid_date]
self.strategy.step(row)
return row
def run(self) -> BacktestResult:
while self.date < self.endDate:
self.next()
return BacktestResult(
final_value=self.totalValue(),
transactions=self.transactions,
strategy=self.strategy
)
def _execute_buy(self, price: float, numShares: int, valid_date: pd.Timestamp, trade_type: TradeType = TradeType.BUY) -> Holding:
return execute_buy(self, price, numShares, valid_date, trade_type)
def _execute_sell(self, price: float, numShares: int, valid_date: pd.Timestamp, trade_type: TradeType = TradeType.SELL) -> Holding:
return execute_sell(self, price, numShares, valid_date, trade_type)
def _execute_market_buy(self, numShares: int, valid_date: pd.Timestamp) -> Holding:
return execute_market_buy(self, numShares, valid_date)
def _execute_market_sell(self, numShares: int, valid_date: pd.Timestamp) -> Holding:
return execute_market_sell(self, numShares, valid_date)
def _execute_short_sell(self, price: float, numShares: int, valid_date: pd.Timestamp) -> Holding:
holding = execute_short_sell(self, price, numShares, valid_date)
holding.shortPosition = True
return holding
def _execute_short_cover(self, price: float, numShares: int, valid_date: pd.Timestamp) -> Holding:
holding = execute_short_cover(self, price, numShares, valid_date)
holding.shortPosition = False
return holding
def trade(self, tradeType: TradeType, numShares: int, price: float = None, duration: str = 'DAY') -> Optional[Holding]:
validDate = self.formatDate(self.date)
current_price = price if price is not None else self.hist.loc[validDate].Close
if tradeType == TradeType.BUY:
return self._execute_buy(current_price, numShares, validDate)
elif tradeType == TradeType.SELL:
return self._execute_sell(current_price, numShares, validDate)
elif tradeType == TradeType.MARKET_BUY:
return self._execute_market_buy(numShares, validDate)
elif tradeType == TradeType.MARKET_SELL:
return self._execute_market_sell(numShares, validDate)
elif tradeType == TradeType.SHORT_SELL:
return self._execute_short_sell(current_price, numShares, validDate)
elif tradeType == TradeType.SHORT_COVER:
return self._execute_short_cover(current_price, numShares, validDate)
elif tradeType in [TradeType.LIMIT_BUY, TradeType.LIMIT_SELL]:
if price is None:
raise ValueError("Price must be specified for limit orders")
order = Order(
tradeType=tradeType,
ticker=self.ticker,
numShares=numShares,
targetPrice=price,
duration=duration,
orderDate=self.date
)
self.pending_orders.append(order)
return None
else:
raise InvalidOrderError(f"Unsupported trade type: {tradeType}")
def totalValue(self) -> float:
total_value = self.cash
valid_date = self.formatDate(self.date)
current_price = self.hist.loc[valid_date].Close
for holding in self.holdings:
if holding.shortPosition:
# Subtract the liability to buy back the shares
total_value -= current_price * holding.numShares
else:
# Add the value of long positions
total_value += current_price * holding.numShares
return total_value
def getPosition(self) -> int:
position = sum(h.numShares if not h.shortPosition else -h.numShares for h in self.holdings)
return position
def calculatePositionSize(self, risk_per_trade: float, stop_loss: float) -> int:
risk_amount = self.cash * risk_per_trade
position_size = risk_amount / stop_loss
return int(position_size)
def applyStopLoss(self, stop_loss: float):
valid_date = self.getValidDate(self.date)
for holding in self.holdings[:]:
if holding.shortPosition:
if holding.entryPrice * (1 + stop_loss) <= self.hist.loc[valid_date].Close:
self._execute_short_cover(self.hist.loc[valid_date].Close, holding.numShares, valid_date)
else:
if holding.entryPrice * (1 - stop_loss) >= self.hist.loc[valid_date].Close:
self._execute_sell(self.hist.loc[valid_date].Close, holding.numShares, valid_date)
def applyTakeProfit(self, take_profit: float):
valid_date = self.getValidDate(self.date)
for holding in self.holdings[:]:
if holding.shortPosition:
if holding.entryPrice * (1 - take_profit) >= self.hist.loc[valid_date].Close:
self._execute_short_cover(self.hist.loc[valid_date].Close, holding.numShares, valid_date)
else:
if holding.entryPrice * (1 + take_profit) <= self.hist.loc[valid_date].Close:
self._execute_sell(self.hist.loc[valid_date].Close, holding.numShares, valid_date)
def calculateVaR(self, confidence_level: float = 0.95) -> float:
returns = self.hist['Close'].pct_change().dropna()
return calculateVaR(returns, confidence_level)
def rebalancePortfolio(self, target_allocations: Dict[str, float]):
valid_date = self.getValidDate(self.date)
total_value = self.totalValue()
for ticker, target_allocation in target_allocations.items():
target_value = total_value * target_allocation
current_value = sum(h.totalCost for h in self.holdings if h.ticker == ticker)
if current_value < target_value:
num_shares_to_buy = (target_value - current_value) / self.hist.loc[valid_date].Close
self._execute_buy(self.hist.loc[valid_date].Close, int(num_shares_to_buy), valid_date)
elif current_value > target_value:
num_shares_to_sell = (current_value - target_value) / self.hist.loc[valid_date].Close
self._execute_sell(self.hist.loc[valid_date].Close, int(num_shares_to_sell), valid_date)