From dbbb9e768665457d3997162699432d1edbd40f9d Mon Sep 17 00:00:00 2001 From: Rolf Morel Date: Tue, 3 Sep 2024 02:18:57 -0700 Subject: [PATCH] Add simple script to benchmark LoRA fragment Requires that Xonsh is installed. --- tools/mlir_bench/lora-runner.xsh | 72 ++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100755 tools/mlir_bench/lora-runner.xsh diff --git a/tools/mlir_bench/lora-runner.xsh b/tools/mlir_bench/lora-runner.xsh new file mode 100755 index 00000000000000..cc6fe3449bdbc2 --- /dev/null +++ b/tools/mlir_bench/lora-runner.xsh @@ -0,0 +1,72 @@ +#!/usr/bin/env xonsh + +# xonsh can be installed with `pip install xonsh` +# xonsh can then be run by invoking `python -m xonsh` +# this script in particular can be invoked with `python -m xonsh lora-benchmark.xsh` + +import openvino as ov +from openvino.runtime.op import Constant +from openvino_devtools.builder import OpFactory, outputs_to_nodes +import numpy as np +from pprint import pprint +import re + + +SIZES = [8, 16, 32, 64, 128, 256, 512, 1024] +ITERATIONS = 100 + +BENCH_RUNNER="tpp-run" +BENCH_FLAGS=f"-entry-point-result=void -e entry -seed 123 -n {ITERATIONS}".split() + + +def build_lora_model(x_dyn_dim): + opset = OpFactory('opset13') + + #t40 = opset.Parameter({'shape': [-1, -1, 2048], 'element_type': 'f32'}, output_names=[{'x'}]) # Input data + t40 = opset.Parameter({'shape': [x_dyn_dim, 2048], 'element_type': 'f32'}, output_names=[{'x'}]) # Input data + t52 = opset.Parameter({'shape': [1, 8], 'element_type': 'f32'}, output_names=[{'alpha'}]) # LoRA alpha parameter + + t48 = Constant(np.random.rand(2048, 2048).astype(np.float32)) # -> f32[2048,2048] # Original weight matrix W (usually it is compressed to bf16/f16/u8/u4 and represented as a sub-graph) + t50 = Constant(np.random.rand(8, 2048).astype(np.float32)) # -> f32[8,2048] # LoRA matrix A + t54 = Constant(np.random.rand(2048, 8).astype(np.float32)) # -> f32[2048,8] # LoRA matrix B + + t49 = opset.MatMul([t40, t48], {'transpose_a': False, 'transpose_b': True}) # f32[?,?,2048], f32[2048,2048] -> f32[?,?,2048] + t51 = opset.MatMul([t40, t50], {'transpose_a': False, 'transpose_b': True}) # f32[?,?,2048], f32[8,2048] -> f32[?,?,8] + t53 = opset.Multiply([t51, t52], {'auto_broadcast': 'numpy'}) # f32[?,?,8], f32[1,8] -> f32[?,?,8] + t55 = opset.MatMul([t53, t54], {'transpose_a': False, 'transpose_b': True}) # f32[?,?,8], f32[2048,8] -> f32[?,?,2048] + t56 = opset.Add([t49, t55], {'auto_broadcast': 'numpy'}) # f32[?,?,2048], f32[?,?,2048] -> f32[?,?,2048] + t57 = opset.Result([t56], {}) # f32[?,?,2048] -> f32[?,?,2048] + + parameters = [t40, t52] + results = [t57] + sinks = [] + return ov.Model(outputs_to_nodes(results), outputs_to_nodes(sinks), outputs_to_nodes(parameters)) + + +def main(): + no_mlir_averages = [] + mlir_averages = [] + no_ov_averages = [] + for size in SIZES: + model_xml = f"lora.{size}.xml" + model = build_lora_model(size) + ov.save_model(model, model_xml) + + def do_it(env_str): + out = $(env @(env_str) benchmark_app -m @(model_xml) -d CPU -niter @(ITERATIONS) -hint none -nstreams 1 -nthreads 1) + match = re.search(r"Average: +(\d.*) ms", out) + return float(match.group(1)) + no_mlir_averages.append(do_it("OV_MLIR=0")) + mlir_averages.append(do_it("OV_MLIR=1")) + + raw_kernel_secs = $(env OV_MLIR=1 OV_MLIR_TPP=1 OV_MLIR_DEBUG=1 benchmark_app -m @(model_xml) -d CPU -niter 1 -hint none -nstreams 1 -nthreads 1 2>&1 | awk '/Source MLIR:/{flag=1; next} /Target LLVM:/{flag=0} flag' | grep -vE '^[-]+$' | tpp-run @(BENCH_FLAGS)) + no_ov_averages.append(float(raw_kernel_secs) * 1000) + + print("SIZES", SIZES) + print("OV NO-MLIR", no_mlir_averages) + print("OV MLIR", mlir_averages) + print("NO-OV MLIR", no_ov_averages) + + +if __name__ == "__main__": + main()