forked from booydar/recurrent-memory-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimizers.py
214 lines (187 loc) · 9.02 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import math
import torch
from torch.optim import Optimizer
class Adafactor(Optimizer):
"""
AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
Paper: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` https://arxiv.org/abs/1804.04235 Note that
this optimizer internally adjusts the learning rate depending on the *scale_parameter*, *relative_step* and
*warmup_init* options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (:obj:`Iterable[torch.nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (:obj:`float`, `optional`):
The external learning rate.
eps (:obj:`Tuple[float, float]`, `optional`, defaults to (1e-30, 1e-3)):
Regularization constants for square gradient and parameter scale respectively
clip_threshold (:obj:`float`, `optional`, defaults 1.0):
Threshold of root mean square of final gradient update
decay_rate (:obj:`float`, `optional`, defaults to -0.8):
Coefficient used to compute running averages of square
beta1 (:obj:`float`, `optional`):
Coefficient used for computing running averages of gradient
weight_decay (:obj:`float`, `optional`, defaults to 0):
Weight decay (L2 penalty)
scale_parameter (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, learning rate is scaled by root mean square
relative_step (:obj:`bool`, `optional`, defaults to :obj:`True`):
If True, time-dependent learning rate is computed instead of external learning rate
warmup_init (:obj:`bool`, `optional`, defaults to :obj:`False`):
Time-dependent learning rate computation depends on whether warm-up initialization is being used
This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.
Recommended T5 finetuning settings:
- Scheduled LR warm-up to fixed LR
- disable relative updates
- use clip threshold: https://arxiv.org/abs/2004.14546
Example::
Adafactor(model.parameters(), lr=1e-3, relative_step=False, warmup_init=True)
- Alternatively, relative_step with warmup_init can be used.
- Training without LR warmup or clip threshold is not recommended. Additional optimizer operations like
gradient clipping should not be used alongside Adafactor.
Usage::
# replace AdamW with Adafactor
optimizer = Adafactor(
model.parameters(),
lr=1e-3,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False
)
"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
if lr is not None and relative_step:
raise ValueError("Cannot combine manual lr and relative_step options")
if warmup_init and not relative_step:
raise ValueError("warmup_init requires relative_step=True")
defaults = dict(
lr=lr,
eps=eps,
clip_threshold=clip_threshold,
decay_rate=decay_rate,
beta1=beta1,
weight_decay=weight_decay,
scale_parameter=scale_parameter,
relative_step=relative_step,
warmup_init=warmup_init,
)
super().__init__(params, defaults)
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
# copy from fairseq's adafactor implementation:
# https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
# fixes gradient ckpt and 3-d parralelism issues huggingface/transformers#11536
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
group['scaled_lr'] = lr.item() if isinstance(lr, torch.Tensor) else lr
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad ** 2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-1))
exp_avg_sq_col.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-2))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(1.0 - beta2t, update)
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(1 - group["beta1"], update)
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(-group["weight_decay"] * lr, p_data_fp32)
p_data_fp32.add_(-update)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss