forked from yjh0410/new-YOLOv1_PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
113 lines (94 loc) · 3.46 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
from data import *
import argparse
from utils.vocapi_evaluator import VOCAPIEvaluator
from utils.cocoapi_evaluator import COCOAPIEvaluator
parser = argparse.ArgumentParser(description='YOLO Detector Evaluation')
parser.add_argument('-v', '--version', default='yolo',
help='yolo.')
parser.add_argument('-d', '--dataset', default='voc',
help='voc, coco-val, coco-test.')
parser.add_argument('--trained_model', type=str,
default='weights_yolo_v2/yolo_v2_72.2.pth',
help='Trained state_dict file path to open')
parser.add_argument('-size', '--input_size', default=416, type=int,
help='input_size')
parser.add_argument('--cuda', action='store_true', default=False,
help='Use cuda')
args = parser.parse_args()
def voc_test(model, device, input_size):
evaluator = VOCAPIEvaluator(data_root=VOC_ROOT,
img_size=input_size,
device=device,
transform=BaseTransform(input_size),
labelmap=VOC_CLASSES,
display=True
)
# VOC evaluation
evaluator.evaluate(model)
def coco_test(model, device, input_size, test=False):
if test:
# test-dev
print('test on test-dev 2017')
evaluator = COCOAPIEvaluator(
data_dir=coco_root,
img_size=input_size,
device=device,
testset=True,
transform=BaseTransform(input_size)
)
else:
# eval
evaluator = COCOAPIEvaluator(
data_dir=coco_root,
img_size=input_size,
device=device,
testset=False,
transform=BaseTransform(input_size)
)
# COCO evaluation
evaluator.evaluate(model)
if __name__ == '__main__':
# dataset
if args.dataset == 'voc':
print('eval on voc ...')
num_classes = 20
elif args.dataset == 'coco-val':
print('eval on coco-val ...')
num_classes = 80
elif args.dataset == 'coco-test':
print('eval on coco-test-dev ...')
num_classes = 80
else:
print('unknow dataset !! we only support voc, coco-val, coco-test !!!')
exit(0)
# cuda
if args.cuda:
print('use cuda')
torch.backends.cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
# input size
input_size = [args.input_size, args.input_size]
# build model
if args.version == 'yolo':
from models.yolo import myYOLO
net = myYOLO(device, input_size=input_size, num_classes=num_classes, trainable=False)
else:
print('Unknown Version !!!')
exit()
# load net
net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
net.eval()
print('Finished loading model!')
net = net.to(device)
# evaluation
with torch.no_grad():
if args.dataset == 'voc':
voc_test(net, device, input_size)
elif args.dataset == 'coco-val':
coco_test(net, device, input_size, test=False)
elif args.dataset == 'coco-test':
coco_test(net, device, input_size, test=True)