forked from google-research/slip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models_test.py
56 lines (47 loc) · 1.64 KB
/
models_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for models."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import models
import utils
class ModelsTest(parameterized.TestCase):
@parameterized.named_parameters(
dict(
testcase_name='one_sequence',
sequences=[[1, 0, 0]],
),
dict(
testcase_name='two_sequences',
sequences=[[0, 0, 0], [1, 0, 0]],
),
dict(
testcase_name='three_sequences',
sequences=[[0, 0, 0], [1, 0, 0], [2, 2, 2]],
),
)
def test_fit_predict(self, sequences):
sequence_length = 3
vocab_size = 3
model = models.KerasModelWrapper(
models.build_cnn_model, sequence_length, vocab_size, fit_kwargs={})
x = utils.onehot(np.array(sequences), num_classes=vocab_size)
y = np.ones(len(sequences))
model.fit(x, y)
output_shape = (len(sequences),)
self.assertEqual(model.predict(x).shape, output_shape)
if __name__ == '__main__':
absltest.main()