-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
227 lines (192 loc) · 8.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import random
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torchvision import datasets
from torch.utils.data.dataset import Subset
from dataloaders.ed_loader import EdgeDepth
from dataloaders.canon_dp_loader import CanonDualPixel
from dataloaders.canon_dp1169_loader import CanonDualPixel1169
import criteria
from iteration import iterate
from args import parser
import utils.helper as helper
from model.model import GT, Through
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def torch_fix_seed(seed=0, cuda=False):
import torch.backends.cudnn as cudnn
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
torch.use_deterministic_algorithms = True
criterion_mapping = {
'l2': criteria.MaskedMSELoss,
'l1': criteria.MaskedL1Loss,
'l1l2': criteria.MaskedL1L2Loss,
'l2c': criteria.UncertaintyL2Loss,
'l1c': criteria.UncertaintyL1Loss,
'l1l2c': criteria.UncertaintyL1L2Loss
}
def select_backbone(args, device, conf=False):
if args.network_variant == 'gt':
model = GT(args).to(device)
elif args.network_variant == 'through':
model = Through(args).to(device)
elif args.network_variant == 'nlspn':
from model.model_nlspn import NLSPNModelConf, NLSPNModel
model = NLSPNModelConf(args).to(device) if conf else NLSPNModel(args).to(device)
elif args.network_variant == 'costdcnet':
from model.model_costdcnet import CostDCNetConf, CostDCNet
model = CostDCNetConf(args).to(device) if conf else CostDCNet(args).to(device)
else:
print('Not supported model')
exit(-1)
return model
def load_checkpoint(filepath, device):
if os.path.isfile(filepath):
print(f"=> loading checkpoint '{filepath}' ... ", end='')
checkpoint = torch.load(filepath, map_location=device)
print("Completed.")
return checkpoint
else:
print(f"No model found at '{filepath}'")
return None
def create_data_loader(dataset, args, shuffle, batch_size=1):
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0,
pin_memory=True,
worker_init_fn=seed_worker if args.seed != -1 else None,
generator=torch.Generator().manual_seed(args.seed) if args.seed != -1 else None
)
def main():
args = parser()
print(args)
if args.data_type in ['cdp', 'cdp1169']:
import utils.logger_dp as logger_module
import metrics_dp as metrics
else:
import utils.logger as logger_module
import metrics as metrics
data_type_mapping = {
'ed': EdgeDepth,
'cdp': CanonDualPixel,
'cdp1169': CanonDualPixel1169
}
try:
Dataset = data_type_mapping[args.data_type]
except KeyError:
raise ValueError(f"Unsupported data type: {args.data_type}")
cuda = torch.cuda.is_available() and not args.cpu
device = torch.device(f"cuda:{0 if args.gpu < 0 else args.gpu}" if cuda else "cpu")
print(f"=> using '{device}' for computation.")
if args.seed != -1:
torch_fix_seed(args.seed, cuda)
depth_criterion_class = criterion_mapping.get(args.criterion)
if depth_criterion_class is None:
print('Not supported criteria')
exit(-1)
depth_criterion = depth_criterion_class()
checkpoint = None
is_eval = False
if args.test or args.test_with_gt:
test_dataset = Dataset('test', args)
img_size = test_dataset.__size__()
else:
val_dataset = Dataset('val', args)
img_size = val_dataset.__size__()
if not args.crop:
args.val_h = img_size[0]
args.val_w = img_size[1]
if args.autoresume or args.bestresume:
output_directory = helper.get_folder_name(args)
args.resume = helper.search_checkpoint_latest(output_directory) if args.autoresume else helper.search_checkpoint_best(output_directory)
print('Resume from:', args.resume)
if args.evaluate:
checkpoint = load_checkpoint(args.evaluate, device)
if checkpoint:
args.start_epoch = checkpoint['epoch'] + 1
is_eval = True
elif args.resume:
checkpoint = load_checkpoint(args.resume, device)
if checkpoint:
args.start_epoch = checkpoint['epoch'] + 1
if args.autoresume or args.bestresume:
args.start_epoch_bias = args.start_epoch
else:
return
print("=> creating model and optimizer ... ", end='')
model = select_backbone(args, device, conf=(args.network_model == 'c'))
if checkpoint:
model.load_state_dict(checkpoint['model'][0] if type(checkpoint['model']) is tuple else checkpoint['model'], strict=False)
print("=> checkpoint state loaded.")
logger = logger_module.logger(args)
if checkpoint:
logger.best_result = checkpoint['best_result']
logger.save_args_txt()
print("=> logger created.")
if args.test or args.test_with_gt:
test_loader = create_data_loader(test_dataset, args, shuffle=False)
for p in model.parameters():
p.requires_grad = False
iterate("test", args, test_loader, model, None, logger, metrics, 0, depth_criterion, device)
return
if args.small:
n_samples = len(val_dataset)
small_size = int(n_samples * args.small_rate)
subset_indices = list(range(0, small_size))
val_dataset = Subset(val_dataset, subset_indices) if subset_indices else torch.utils.data.random_split(val_dataset, [small_size, n_samples - small_size])[0]
val_loader = create_data_loader(val_dataset, args, shuffle=False)
print(f"\t==> val_loader size:{len(val_loader)}")
if args.vis_skip == -1:
args.vis_skip = int(len(val_dataset) / 8) + 1
if is_eval:
for p in model.parameters():
p.requires_grad = False
iterate("eval", args, val_loader, model, None, logger, metrics, args.start_epoch - 1, depth_criterion, device)
return
model_named_params = [p for _, p in model.named_parameters() if p.requires_grad]
optimizer = torch.optim.Adam(model_named_params, lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.99))
if checkpoint and args.optimizer_load:
optimizer.load_state_dict(checkpoint['optimizer'])
print("completed.")
if args.gpu < 0:
model = torch.nn.DataParallel(model)
print("=> creating data loaders ... ")
if not is_eval:
train_dataset = Dataset('train', args)
if args.small:
n_samples = len(train_dataset)
small_size = int(n_samples * args.small_rate)
train_dataset = torch.utils.data.random_split(train_dataset, [small_size, n_samples - small_size])[0]
elif args.train_num > 0:
n_samples = len(train_dataset)
subset_indices = list(range(0, args.train_num)) if not args.train_random else None
train_dataset = Subset(train_dataset, subset_indices) if subset_indices else torch.utils.data.random_split(train_dataset, [args.train_num, n_samples - args.train_num])[0]
train_loader = create_data_loader(train_dataset, args, shuffle=True, batch_size=args.batch_size)
print(f"\t==> train_loader size:{len(train_loader)}")
print("=> starting main loop ...")
for epoch in range(args.start_epoch, args.epochs):
print(f"=> starting training epoch {epoch} ..")
iterate("train", args, train_loader, model, optimizer, logger, metrics, epoch, depth_criterion, device)
for p in model.parameters():
p.requires_grad = False
result, is_best = iterate("val", args, val_loader, model, None, logger, metrics, epoch, depth_criterion, device)
for p in model.parameters():
p.requires_grad = True
save_model = model.module.state_dict() if args.gpu < 0 else model.state_dict()
helper.save_checkpoint({'epoch': epoch, 'model': save_model, 'best_result': logger.best_result, 'optimizer': optimizer.state_dict(), 'args': args}, is_best, epoch, logger.output_directory)
if __name__ == '__main__':
main()