-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproofs1.v
266 lines (225 loc) · 3.67 KB
/
proofs1.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
Theorem plus_O_n: forall n : nat , (plus O n) = n.
Proof.
intros n. simpl. reflexivity. Qed.
Theorem plus_O_n': forall n : nat , (O + n) = n.
Proof.
intros n. simpl. reflexivity. Qed.
Theorem plus_O_n'': forall n : nat, (plus O n) = n.
Proof.
intros n. reflexivity. Qed.
Theorem plus_1_1 : forall n : nat, ((S O) + n) = (S n).
Proof.
intros n. simpl. reflexivity. Qed.
Theorem mult_0_1: forall n:nat, (O * n) = O.
Proof.
intros n. reflexivity. Qed.
Theorem mult_0_11: forall n:nat, (mult O n) = O.
Proof.
intros n. reflexivity. Qed.
Theorem plus_n_0: forall n:nat, n = (n + O).
Proof.
intros n.
Admitted.
Theorem plus_id_example: forall n m :nat,
n = m ->
n + n = m + m.
Proof.
Admitted.
Theorem plus_id_exercise: forall n m o : nat,
n = m -> m = o -> n + m = m + o.
Proof.
intros n m o.
intros H.
intros J.
rewrite H.
rewrite J.
reflexivity.
Qed.
Theorem mult_0_plus : forall n m: nat,
(O + n) * m = n * m.
Proof.
intros n m.
simpl.
reflexivity.
Qed.
Theorem mult_0_plus' : forall n m: nat,
(O + n) * m = n * m.
Proof.
intros n m.
rewrite mult_0_plus.
reflexivity.
Qed.
Theorem mult_0_plus'' : forall n m: nat,
(O + n) * m = n * m.
Proof.
intros n m.
rewrite plus_O_n'.
reflexivity.
Qed.
Theorem mult_S_1 : forall n m : nat,
m = S n ->
m * ((S O) + n) = m * m.
Proof.
intros n m.
intros H.
rewrite plus_1_1.
rewrite <- H.
reflexivity.
Qed.
Theorem plus_1_neq_0_firsttry : forall n : nat,
beq_nat (n + (S O)) O = false.
Proof.
intros n.
destruct n as [| n'].
reflexivity.
reflexivity.
Qed.
Theorem plus_1_neq_0_firsttry' : forall n : nat,
beq_nat (n + (S O)) O = false.
Proof.
intros n.
destruct n as [| n'].
simpl.
reflexivity.
simpl.
reflexivity.
Qed.
Theorem negb_involutive : forall b : bool,
(negb (negb b)) = b.
Proof.
intro b.
simpl.
destruct b.
- simpl.
reflexivity.
- simpl.
reflexivity.
Qed.
Theorem andb_commutative : forall b c: bool,
andb b c = andb c b.
Proof.
intros b c.
destruct b.
destruct c.
simpl.
reflexivity.
simpl.
reflexivity.
destruct c.
simpl.
reflexivity.
simpl.
reflexivity.
Qed.
Theorem andb_commutative_with_braces : forall b c:bool,
andb b c = andb c b.
Proof.
intros b c.
destruct b.
{ destruct c.
{ simpl. reflexivity. }
{ simpl. reflexivity. } }
{ destruct c.
{ simpl. reflexivity. }
{ simpl. reflexivity. } }
Qed.
Theorem andb3_exchange: forall b c d,
andb (andb b c) d = andb (andb b d) c.
intros b c d.
{ destruct b.
{ destruct c.
{ destruct d.
{ simpl.
reflexivity. }
{ simpl.
reflexivity. } }
{ destruct d.
{ simpl.
reflexivity. }
{ simpl.
reflexivity. } }
{ destruct c.
{ destruct d.
{ simpl.
reflexivity. }
{ simpl.
reflexivity. } }
{ destruct d.
{ simpl.
reflexivity. }
{ simpl.
reflexivity. } } } } }
Qed.
Theorem plus_1_neq_0''' : forall n : nat,
beq_nat (n + (S O)) O = false.
Proof.
intros [|n].
reflexivity.
reflexivity.
Qed.
Theorem andb_true_elim2: forall b c: bool,
andb b c = true -> c = true.
Proof.
intros b c.
{ destruct b.
{ destruct c.
{ simpl.
intros H1.
reflexivity. }
{ simpl.
intros H2.
rewrite H2.
reflexivity. } }
{ destruct c.
{ simpl.
intros H3.
reflexivity. }
{ simpl.
intros H4.
rewrite H4.
reflexivity. } } }
Qed.
Theorem zero_nbeq_plus_1 : forall n: nat,
beq_nat O (S n) = false.
Proof.
intros n.
{ simpl.
reflexivity. }
Qed.
Theorem identity_fn_applied_twice : forall (f : bool -> bool),
(forall (x : bool), f x = x) ->
forall (b : bool),
f (f b) = b.
Proof.
intros f.
intros H.
intros b0.
rewrite H.
rewrite H.
reflexivity.
Qed.
Theorem andb_eq_orb:
forall (b c : bool),
(andb b c) = (orb b c) ->
b=c.
Proof.
intros b0.
intros c.
destruct b0.
destruct c.
simpl.
intros H.
reflexivity.
simpl.
intros H1.
rewrite H1.
reflexivity.
destruct c.
simpl.
intros H2.
rewrite H2.
reflexivity.
simpl.
intros H3.
reflexivity.
Qed.