This repository has been archived by the owner on Aug 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.go
419 lines (375 loc) · 11.7 KB
/
utils.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
package sdf
import (
"errors"
"math"
"github.com/soypat/sdf/internal/d2"
"github.com/soypat/sdf/internal/d3"
"gonum.org/v1/gonum/spatial/r2"
"gonum.org/v1/gonum/spatial/r3"
)
const (
pi = math.Pi
tau = 2 * pi
sqrtHalf = 0.7071067811865476
tolerance = 1e-9
)
const (
// epsilon is the machine epsilon. For IEEE this is 2^{-53}.
dlamchE = 0x1p-53
// dlamchB is the radix of the machine (the base of the number system).
dlamchB = 2
// dlamchP is base * eps.
dlamchP = dlamchB * dlamchE
// dlamchS is the "safe minimum", that is, the lowest number such that
// 1/dlamchS does not overflow, or also the smallest normal number.
// For IEEE this is 2^{-1022}.
dlamchS = 0x1p-1022
epsilon = 1e-12
)
// R2ToI temporary home for this function.
//
// Deprecated: R2ToI is deprecated.
func R2ToI(a r2.Vec) V2i { // Deprecated: R2ToI is deprecated.
return V2i{int(a.X), int(a.Y)}
}
// R3ToI temporary home for this function.
//
// Deprecated: R3ToI is deprecated.
func R3ToI(a r3.Vec) V3i {
return V3i{int(a.X), int(a.Y), int(a.Z)}
}
// R3FromI temporary home for this function.
//
// Deprecated: R3FromI is deprecated.
func R3FromI(a V3i) r3.Vec {
return r3.Vec{X: float64(a[0]), Y: float64(a[1]), Z: float64(a[2])}
}
// R2FromI temporary home for this function.
//
// Deprecated: R2FromI is deprecated.
func R2FromI(a V2i) r2.Vec {
return r2.Vec{X: float64(a[0]), Y: float64(a[1])}
}
// clamp x between a and b, assume a <= b
func clamp(x, a, b float64) float64 {
if x < a {
return a
}
if x > b {
return b
}
return x
}
// mix does a linear interpolation from x to y, a = [0,1]
func mix(x, y, a float64) float64 {
return x + (a * (y - x))
}
// sign returns the sign of x
func sign(x float64) float64 {
if x < 0 {
return -1
}
if x > 0 {
return 1
}
return 0
}
// sawTooth generates a sawtooth function. Returns [-period/2, period/2)
func sawTooth(x, period float64) float64 {
x += period / 2
t := x / period
return period*(t-math.Floor(t)) - period/2
}
// MinRound returns a minimum function that uses a quarter-circle to join the two objects smoothly.
func MinRound(k float64) MinFunc {
return func(a, b float64) float64 {
u := d2.MaxElem(r2.Vec{X: k - a, Y: k - b}, r2.Vec{X: 0, Y: 0})
return math.Max(k, math.Min(a, b)) - r2.Norm(u)
}
}
// MinExp returns a minimum function with exponential smoothing (k = 32).
func MinExp(k float64) MinFunc {
return func(a, b float64) float64 {
return -math.Log(math.Exp(-k*a)+math.Exp(-k*b)) / k
}
}
// MinPow returns a minimum function (k = 8).
// TODO - weird results, is this correct?
func MinPow(k float64) MinFunc {
return func(a, b float64) float64 {
a = math.Pow(a, k)
b = math.Pow(b, k)
return math.Pow((a*b)/(a+b), 1/k)
}
}
func minQuad(a, b, k float64) float64 {
// https://iquilezles.org/articles/smin/
h := math.Max(k-math.Abs(a-b), 0) / k
return math.Min(a, b) - h*h*k*0.25
}
func minCubic(a, b, k float64) float64 {
// https://iquilezles.org/articles/smin/
h := math.Max(k-math.Abs(a-b), 0) / k
return math.Min(a, b) - h*h*h*k*(1.0/6.0)
}
// minPoly is the general, non-performant implementation of a polyomial smoother.
func minPoly(n int, k float64) MinFunc {
nf := float64(n)
div := 0.5 / nf
return func(a, b float64) float64 {
h := math.Max(k-math.Abs(a-b), 0) / k
return math.Min(a, b) - math.Pow(h, nf)*k*div
}
}
// MinPoly creates a n-degree polynomial MinFunc with
// parameter k that controls radius of the smoothing function.
// - n<0 or k<=0 undefined output
// - n=0 returns a chamfer-like MinFunc
// - n=1 returns math.Min
func MinPoly(n int, k float64) MinFunc {
if n < 0 || k <= 0 {
// Let users go crazy?
return func(a, b float64) float64 {
return math.Min(a, b) - math.Max(k-math.Abs(a-b), 0)
}
}
// Return performant MinFunc for common use cases.
switch n {
// return math.Min(a, b) - math.Max(k-math.Abs(a-b), 0)
case 0:
return func(a, b float64) float64 {
// which implementation is better?
return math.Min(math.Min(a, b), (a-k+b)*sqrtHalf)
}
case 1:
return math.Min
case 2:
return func(a, b float64) float64 {
return minQuad(a, b, k)
}
case 3:
return func(a, b float64) float64 {
return minCubic(a, b, k)
}
}
return minPoly(n, k)
}
// MaxFunc is a maximum function for SDF blending.
type MaxFunc func(a, b float64) float64
// MaxPoly creates a n-degree polynomial MaxFunc with
// parameter k that controls radius of the smoothing function.
// Implementation untested.
func MaxPoly(n int, k float64) MaxFunc {
if n < 0 || k <= 0 {
// Let users go crazy?
return func(a, b float64) float64 {
return -(-math.Min(a, b) - math.Max(k-math.Abs(b-a), 0))
}
}
return maxPoly(n, k)
}
// maxPoly is the general, non-performant implementation of MaxPoly.
func maxPoly(n int, k float64) MaxFunc {
nf := float64(n)
div := 0.5 / nf
return func(a, b float64) float64 {
h := math.Max(k-math.Abs(b-a), 0) / k
return -(math.Min(-a, -b) - math.Pow(h, nf)*k*div)
}
}
// ExtrudeFunc maps r3.Vec to V2 - the point used to evaluate the SDF2.
type ExtrudeFunc func(p r3.Vec) r2.Vec
// NormalExtrude returns an extrusion function.
func NormalExtrude(p r3.Vec) r2.Vec {
return r2.Vec{X: p.X, Y: p.Y}
}
// TwistExtrude returns an extrusion function that twists with z.
func TwistExtrude(height, twist float64) ExtrudeFunc {
k := twist / height
return func(p r3.Vec) r2.Vec {
m := Rotate(p.Z * k)
return m.MulPosition(r2.Vec{X: p.X, Y: p.Y})
}
}
// ScaleExtrude returns an extrusion functions that scales with z.
func ScaleExtrude(height float64, scale r2.Vec) ExtrudeFunc {
inv := r2.Vec{X: 1 / scale.X, Y: 1 / scale.Y}
// TODO verify
m := d2.DivElem(r2.Sub(inv, r2.Vec{X: 1, Y: 1}), d2.Elem(height)) // slope
b := r2.Add(d2.DivElem(inv, d2.Elem(2)), d2.Elem(0.5))
// b := inv.DivScalar(2).AddScalar(0.5) // intercept
return func(p r3.Vec) r2.Vec {
return d2.MulElem(r2.Vec{X: p.X, Y: p.Y}, r2.Add(b, r2.Scale(p.Z, m)))
}
}
// ScaleTwistExtrude returns an extrusion function that scales and twists with z.
func ScaleTwistExtrude(height, twist float64, scale r2.Vec) ExtrudeFunc {
k := twist / height
inv := r2.Vec{X: 1 / scale.X, Y: 1 / scale.Y}
m := r2.Sub(inv, d2.DivElem(r2.Vec{X: 1, Y: 1}, d2.Elem(height))) // slope
// m := inv.Sub(r2.Vec{1, 1}).DivScalar(height) // slope
b := r2.Add(d2.DivElem(inv, d2.Elem(2)), d2.Elem(0.5))
// b := inv.DivScalar(2).AddScalar(0.5) // intercept
return func(p r3.Vec) r2.Vec {
// Scale and then Twist
// pnew := r2.Vec{p.X, p.Y}.Mul(m.MulScalar(p.Z).Add(b)) // Scale
pnew := d2.MulElem(r2.Vec{X: p.X, Y: p.Y}, r2.Add(r2.Scale(p.Z, m), b))
return Rotate(p.Z * k).MulPosition(pnew) // Twist
// Twist and then scale
//pnew := Rotate(p.Z * k).MulPosition(r2.Vec{p.X, p.Y})
//return pnew.Mul(m.MulScalar(p.Z).Add(b))
}
}
// Raycasting
func sigmoidScaled(x float64) float64 {
return 2/(1+math.Exp(-x)) - 1
}
// raycast3 collides a ray (with an origin point from and a direction dir) with an SDF3.
// sigmoid is useful for fixing bad distance functions (those that do not accurately represent the distance to the
// closest surface, but will probably imply more evaluations)
// stepScale controls precision (less stepSize, more precision, but more SDF evaluations): use 1 if SDF indicates
// distance to the closest surface.
// It returns the collision point, how many normalized distances to reach it (t), and the number of steps performed
// If no surface is found (in maxDist and maxSteps), t is < 0
func raycast3(s SDF3, from, dir r3.Vec, scaleAndSigmoid, stepScale, epsilon, maxDist float64, maxSteps int) (collision r3.Vec, t float64, steps int) {
t = 0
dirN := r3.Unit(dir)
pos := from
for {
val := math.Abs(s.Evaluate(pos))
//log.Print("Raycast step #", steps, " at ", pos, " with value ", val, "\n")
if val < epsilon {
collision = pos // Success
break
}
steps++
if steps == maxSteps {
t = -1 // Failure
break
}
if scaleAndSigmoid > 0 {
val = sigmoidScaled(val * 10)
}
delta := val * stepScale
t += delta
pos = r3.Add(pos, r3.Scale(delta, dirN))
if t < 0 || t > maxDist {
t = -1 // Failure
break
}
}
//log.Println("Raycast did", steps, "steps")
return
}
// raycast2 see Raycast3. NOTE: implementation using Raycast3 (inefficient?)
func raycast2(s SDF2, from, dir r2.Vec, scaleAndSigmoid, stepScale, epsilon, maxDist float64, maxSteps int) (r2.Vec, float64, int) {
collision, t, steps := raycast3(Extrude3D(s, 1), r3.Vec{X: from.X, Y: from.Y, Z: 0}, r3.Vec{X: dir.X, Y: dir.Y, Z: 0}, scaleAndSigmoid, stepScale, epsilon, maxDist, maxSteps)
return r2.Vec{X: collision.X, Y: collision.Y}, t, steps
}
// Normals
// normal3 returns the normal of an SDF3 at a point (doesn't need to be on the surface).
// Computed by sampling it several times inside a box of side 2*eps centered on p.
func normal3(s SDF3, p r3.Vec, eps float64) r3.Vec {
return r3.Unit(r3.Vec{
X: s.Evaluate(r3.Add(p, r3.Vec{X: eps})) - s.Evaluate(r3.Add(p, r3.Vec{X: -eps})),
Y: s.Evaluate(r3.Add(p, r3.Vec{Y: eps})) - s.Evaluate(r3.Add(p, r3.Vec{Y: -eps})),
Z: s.Evaluate(r3.Add(p, r3.Vec{Z: eps})) - s.Evaluate(r3.Add(p, r3.Vec{Z: -eps})),
})
}
// normal2 returns the normal of an SDF3 at a point (doesn't need to be on the surface).
// Computed by sampling it several times inside a box of side 2*eps centered on p.
func normal2(s SDF2, p r2.Vec, eps float64) r2.Vec {
return r2.Unit(r2.Vec{
X: s.Evaluate(r2.Add(p, r2.Vec{X: eps})) - s.Evaluate(r2.Add(p, r2.Vec{X: -eps})),
Y: s.Evaluate(r2.Add(p, r2.Vec{Y: eps})) - s.Evaluate(r2.Add(p, r2.Vec{Y: -eps})),
})
}
// Floating Point Comparisons
// See: http://floating-point-gui.de/errors/NearlyEqualsTest.java
const minNormal = 2.2250738585072014e-308 // 2**-1022
// MulVertices multiples a set of V2 vertices by a rotate/translate matrix.
func mulVertices2(v d2.Set, a m33) {
for i := range v {
v[i] = a.MulPosition(v[i])
}
}
// MulVertices multiples a set of r3.Vec vertices by a rotate/translate matrix.
func mulVertices3(v d3.Set, a m44) {
for i := range v {
v[i] = a.MulPosition(v[i])
}
}
// map2 maps a 2d region to integer grid coordinates.
type map2 struct {
bb d2.Box // bounding box
grid V2i // integral dimension
delta r2.Vec
flipy bool // flip the y-axis
}
// newMap2 returns a 2d region to grid coordinates map.
func newMap2(bb d2.Box, grid V2i, flipy bool) (*map2, error) {
// sanity check the bounding box
bbSize := d2.Box(bb).Size()
if bbSize.X <= 0 || bbSize.Y <= 0 {
return nil, errors.New("bad bounding box")
}
// sanity check the integer dimensions
if grid[0] <= 0 || grid[1] <= 0 {
return nil, errors.New("bad grid dimensions")
}
m := map2{}
m.bb = bb
m.grid = grid
m.flipy = flipy
m.delta = d2.DivElem(bbSize, R2FromI(grid))
return &m, nil
}
// ToVec converts grid integer coordinates to 2d region float coordinates.
func (m *map2) ToV2(p V2i) r2.Vec {
ofs := d2.MulElem(r2.Add(R2FromI(p), d2.Elem(0.5)), m.delta)
// ofs := p.ToV2().AddScalar(0.5).Mul(m.delta)
var origin r2.Vec
if m.flipy {
origin = m.bb.TopLeft()
ofs.Y = -ofs.Y
} else {
origin = m.bb.BottomLeft()
}
return r2.Add(origin, ofs)
}
// ToV2i converts 2d region float coordinates to grid integer coordinates.
func (m *map2) ToV2i(p r2.Vec) V2i {
var v r2.Vec
if m.flipy {
v = r2.Sub(p, m.bb.TopLeft())
v.Y = -v.Y
} else {
v = r2.Sub(p, m.bb.BottomLeft())
}
return R2ToI(d2.DivElem(v, m.delta)) // v.Div(m.delta).ToV2i()
}
func sdfBox3d(p, s r3.Vec) float64 {
d := r3.Sub(d3.AbsElem(p), s)
if d.X > 0 && d.Y > 0 && d.Z > 0 {
return r3.Norm(d)
}
if d.X > 0 && d.Y > 0 {
return math.Hypot(d.X, d.Y) // V2{d.X, d.Y}.Length()
}
if d.X > 0 && d.Z > 0 {
return math.Hypot(d.X, d.Z) // V2{d.X, d.Z}.Length()
}
if d.Y > 0 && d.Z > 0 {
return math.Hypot(d.Y, d.Z) //V2{d.Y, d.Z}.Length()
}
if d.X > 0 {
return d.X
}
if d.Y > 0 {
return d.Y
}
if d.Z > 0 {
return d.Z
}
return d3.Max(d)
}