-
Notifications
You must be signed in to change notification settings - Fork 3
/
03_run_postprocessing.py
583 lines (501 loc) · 23.7 KB
/
03_run_postprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import os
import sys
os.environ['USE_PYGEOS'] = '0'
import traceback
import warnings
import geopandas as gpd
import pandas as pd
import psycopg2
from tqdm import tqdm as tq
from datetime import datetime, timezone
from rasterio import CRS
from db_utils import DB
from merge_utils import vectorize_outputv1
from merge_utils import get_transform_from_geom
from merge_utils import calc_maximal_floodraster
from ml4floods.data import utils
from ml4floods.models import postprocess
from dotenv import load_dotenv
# Set bucket will not be requester pays
utils.REQUESTER_PAYS_DEFAULT = False
# DEBUG
warnings.filterwarnings("ignore")
def _key_sort(x):
"""
Sort by date (name of the file) and satellite.
"""
date = os.path.splitext(os.path.basename(x))[0]
satellite = os.path.basename(os.path.dirname(x))
# Preference of Sentinel over Landsat
if satellite == "Landsat":
append = "B"
else:
append = "A"
return date + append
def get_patch_header(db_conn, patch_name, num_pixels=2500):
"""
Query the patch geometry and generate the header variables necessary
for creating a geolocated raster file.
"""
# Query the DB for the patch geometry
query = (f"SELECT patch_name, ST_AsText(geometry) "
f"FROM grid_loc "
f"WHERE patch_name = %s;")
data = [patch_name]
grid_df = db_conn.run_query(query, data, fetch= True)
grid_df['geometry'] = gpd.GeoSeries.from_wkt(grid_df['st_astext'])
grid_df.drop(['st_astext'], axis=1, inplace = True)
grid_gdf = gpd.GeoDataFrame(grid_df, geometry='geometry', crs="EPSG:4326")
# Calculate the transformation matrix
geom_ = grid_gdf.loc[0, 'geometry']
transform = get_transform_from_geom(geom_, num_pixels)
return {"transform": transform,
"crs": CRS.from_epsg("4326"),
"height": num_pixels,
"width": num_pixels}
def do_time_aggregation(geojsons_lst, data_out_path, permanent_water_map=None,
load_existing=False, pred_mode="vect",
head_dict=None):
"""
Perform time-aggregation on a list of GeoJSONs.
"""
aggregate_floodmap = None
if load_existing:
try:
tq.write(f"\tLoad existing temporal aggregate map.")
aggregate_floodmap = utils.read_geojson_from_gcp(data_out_path)
return aggregate_floodmap
except Exception:
tq.write(f"\t[WARN] Failed! Proceeding to create new aggregation.")
aggregate_floodmap = None
try:
# Perform the time aggregation on the list of GeoJSONs
num_files = len(geojsons_lst)
tq.write(f"\tPerforming temporal aggregation of {num_files} files.")
if pred_mode=="vect":
aggregate_floodmap = \
postprocess.get_floodmap_post(geojsons_lst,
mode="max").to_crs(epsg=3857)
else:
if head_dict is None:
raise Exception("No header provided for temporal merge!")
_, aggregate_floodmap = \
calc_maximal_floodraster(geojsons_lst, head_dict, verbose=False)
aggregate_floodmap.to_crs(epsg=3857, inplace=True)
# Add the permanent water polygons
if permanent_water_map is not None:
tq.write(f"\tAdding permanent water layer.")
permanent_water_map = \
permanent_water_map.to_crs(aggregate_floodmap.crs)
aggregate_floodmap = \
postprocess.add_permanent_water_to_floodmap(
permanent_water_map,
aggregate_floodmap,
water_class="water")
# Save output to GCP
aggregate_floodmap.to_crs(epsg=3857, inplace=True)
tq.write(f"\tSaving temporal aggregation to: \n\t{data_out_path}")
utils.write_geojson_to_gcp(data_out_path, aggregate_floodmap)
except Exception:
tq.write("\t[ERR] Temporal aggregation failed!\n")
traceback.print_exc(file=sys.stdout)
aggregate_floodmap = None
return aggregate_floodmap
def do_update_temporal(db_conn, bucket_uri, session_code, aoi, model_name,
flood_start_date, flood_end_date, mode, status,
flood_path):
"""
Query to update the temporal table with a successful result.
"""
query = (f"INSERT INTO postproc_temporal"
f"(bucket_uri, session, patch_name, model_name, "
f"date_start, date_end, mode, status, data_path) "
f"VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) "
f"ON CONFLICT (session, patch_name, mode) DO UPDATE "
f"SET bucket_uri = %s, model_name = %s, date_start = %s, "
f"date_end = %s, data_path = %s, status = %s;")
data = (bucket_uri, session_code, aoi, model_name,
flood_start_date, flood_end_date, mode, status, flood_path,
bucket_uri, model_name, flood_start_date, flood_end_date,
flood_path, status)
db_conn.run_query(query, data)
def do_update_spatial(db_conn, bucket_uri, session_code, mode, data_path,
flood_start_date=None, flood_end_date=None,
ref_start_date=None, ref_end_date=None):
"""
Query to update the spatial table with a successful result.
"""
query = (f"INSERT INTO postproc_spatial"
f"(bucket_uri, session, flood_date_start, flood_date_end,"
f" ref_date_start, ref_date_end, mode, data_path, status) "
f"VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) "
f"ON CONFLICT (session, mode) DO UPDATE "
f"SET bucket_uri = %s, flood_date_start = %s, "
f"flood_date_end = %s, ref_date_start = %s, ref_date_end = %s, "
f"mode = %s, data_path = %s, status = %s")
data = (bucket_uri, session_code, flood_start_date, flood_end_date,
ref_start_date, ref_end_date, mode, data_path, 1,
bucket_uri, flood_start_date, flood_end_date,
ref_start_date, ref_end_date, mode, data_path, 1)
db_conn.run_query(query, data)
def main(session_code: str,
path_env_file: str = "../.env",
collection_name: str = "all",
model_name: str = "all",
overwrite: bool=False,
raster_merge: bool=False,
save_gpkg: bool=False):
# Load the environment from the hidden file and connect to database
success = load_dotenv(dotenv_path=path_env_file, override=True)
if success:
print(f"[INFO] Loaded environment from '{path_env_file}' file.")
print(f"\tKEY FILE: {os.environ['GOOGLE_APPLICATION_CREDENTIALS']}")
print(f"\tPROJECT: {os.environ['GS_USER_PROJECT']}")
else:
sys.exit(f"[ERR] Failed to load the environment file:\n"
f"\t'{path_env_file}'")
# Connect to the FloodMapper DB
db_conn = DB(dotenv_path=path_env_file)
# Fetch the session parameters from the database
query = (f"SELECT flood_date_start, flood_date_end, "
f"ref_date_start, ref_date_end, bucket_uri "
f"FROM session_info "
f"WHERE session = %s")
data = (session_code,)
session_df = db_conn.run_query(query, data, fetch=True)
flood_start_date = session_df.iloc[0]["flood_date_start"]
flood_end_date = session_df.iloc[0]["flood_date_end"]
ref_start_date = session_df.iloc[0]["ref_date_start"]
ref_end_date = session_df.iloc[0]["ref_date_end"]
bucket_uri = session_df.iloc[0]["bucket_uri"]
# Only create the inundation map if given reference dates
create_inundate_map = False
if ref_start_date is not None and ref_end_date is not None:
create_inundate_map = True
# Set raster merge mode
pred_mode = "vect"
if raster_merge:
pred_mode = "pred"
print(f"[INFO] Raster merge mode is '{pred_mode}'")
# Parse flood dates to strings (used as filename roots on GCP)
flood_start_date_str = flood_start_date.strftime("%Y-%m-%d")
flood_end_date_str = flood_end_date.strftime("%Y-%m-%d")
if create_inundate_map:
ref_start_date_str = ref_start_date.strftime("%Y-%m-%d")
ref_end_date_str = ref_end_date.strftime("%Y-%m-%d")
# Construct the GCP paths
rel_grid_path = "0_DEV/1_Staging/GRID"
rel_operation_path = "0_DEV/1_Staging/operational"
grid_path = os.path.join(bucket_uri, rel_grid_path).replace("\\", "/")
bucket_name = bucket_uri.replace("gs://","").split("/")[0]
session_path = os.path.join(bucket_uri,
rel_operation_path,
session_code).replace("\\", "/")
fs = utils.get_filesystem(grid_path)
print(f"[INFO] Will read inference products from:\n\t{grid_path}")
print(f"[INFO] Will write mapping products to:\n\t{session_path}")
# Fetch the AoI grid patch names from the database
query = (f"SELECT DISTINCT patch_name "
f"FROM session_patches "
f"WHERE session = %s")
data = (session_code,)
aois_df = db_conn.run_query(query, data, fetch=True)
num_patches = len(aois_df)
print(f"[INFO] Found {num_patches} grid patches to process.")
if num_patches == 0:
sys.exit(f"[ERR] No valid grid patches selected - exiting.")
aois_list = aois_df.patch_name.to_list()
# Initialise / reset the patches in the postproc_temporal table
for _iaoi, aoi in enumerate(aois_list):
query = (f"INSERT INTO postproc_temporal"
f"(bucket_uri, session, patch_name, mode) "
f"VALUES(%s, %s, %s, %s) "
f"ON CONFLICT (session, patch_name, mode) DO NOTHING;")
data = (bucket_uri, session_code, aoi, "flood")
db_conn.run_query(query, data)
query = (f"UPDATE postproc_temporal "
f"SET status = %s "
f"WHERE session = %s;")
data = (0, session_code)
db_conn.run_query(query, data)
# Loop through the grid patches performing temporal aggregations
for _iaoi, aoi in tq(enumerate(aois_list), total = len(aois_list)):
tq.write("\n" + "-"*80 + "\n")
tq.write(f"PROCESSING TEMPORAL AGGREGATIONS "
f"{_iaoi + 1}/{len(aois_list)}\n"
f"\tPATCH = '{aoi}'")
# Form the paths to read and write folders on the bucket
read_aoi_path = os.path.join(grid_path, aoi).replace("\\", "/")
write_aoi_path = os.path.join(session_path, aoi).replace("\\", "/")
# Query the DB for vector files to be processed
sat_dict ={"all" : ('Landsat', 'S2'),
'Landsat' : ('Landsat',),
'S2' : ('S2',)}
query = (f"SELECT DISTINCT data_path "
f"FROM inference "
f"WHERE patch_name = %s "
f"AND satellite IN %s "
f"AND mode = %s")
data = [aoi, sat_dict[collection_name], pred_mode]
if not model_name == "all":
query += f"AND model_id = %s"
data.append(model_name)
geojsons_df = db_conn.run_query(query, data, fetch=True)
geojsons_lst = [x for x in geojsons_df['data_path'].values]
geojsons_lst.sort(key=_key_sort)
num_files = len(geojsons_lst)
if num_files == 0:
tq.write(f"\t[WARN] No files found for grid patch!")
continue
else:
tq.write(f"\tFound {num_files} total downloaded files (all times).")
# NOTE: At this point we have a list of predictions at ALL dates.
# Create the path to the output flood map
# <bucket_uri>/0_DEV/1_Staging/operational/
# <session_name>/<grid_patch_name>/pre_post_products/*
flood_path = os.path.join(
write_aoi_path, "pre_post_products",
(f"flood_{flood_start_date_str}"
f"_{flood_end_date_str}.geojson")).replace("\\", "/")
# Load vectorized JRC permanent water
tq.write(f"\tLoading permanent water layer.")
try:
permanent_water_map = \
postprocess.load_vectorized_permanent_water(read_aoi_path)
except Exception:
tq.write("\t[WARN] Failed to load permanent water layer!")
permanent_water_map = None
### COMPUTE ONE MAP FOR FLOODING PERIOD ---------------------------#
# Select the FLOOD geojsons by date range
geojsons_flood = [g for g in geojsons_lst
if (os.path.splitext(os.path.basename(g))[0]
>= flood_start_date_str)
and (os.path.splitext(os.path.basename(g))[0]
<= flood_end_date_str)]
num_files = len(geojsons_flood)
if num_files == 0:
tq.write(f"\t[WARN] No files found for flooding period!")
continue
else:
tq.write(f"\tFound {num_files} files during flood period.")
# Get a dictionary of header variables for the patch
if pred_mode=="vect":
head_dict = None
else:
tq.write(f"\tGenerating patch header variables")
head_dict = get_patch_header(db_conn, aoi, num_pixels=2500)
# Perform the time aggregation on the list of GeoJSONs
best_flood_map = do_time_aggregation(geojsons_flood,
flood_path,
permanent_water_map,
not(overwrite),
pred_mode,
head_dict)
# Update the with the details of the aggregate and set 'status' = 1
if best_flood_map is not None:
tq.write(f"\tUpdating database with succcessful result.")
do_update_temporal(db_conn, bucket_uri, session_code, aoi,
model_name, flood_start_date, flood_end_date,
"flood", 1, flood_path)
else:
tq.write(f"[ERR] Failed to create flood map for {aoi}, skipping.")
continue
if create_inundate_map:
### COMPUTE REFERENCE MAP -------------------------------------#
# Create the path to the output reference maps
ref_path = os.path.join(
write_aoi_path, "pre_post_products",
f"ref_{ref_end_date_str}.geojson" ).replace("\\","/")
# Select the REFERENCE geojsons by date range
geojsons_ref = [g for g in geojsons_lst
if (os.path.splitext(os.path.basename(g))[0]
<= ref_end_date_str)
and (os.path.splitext(os.path.basename(g))[0]
>= ref_start_date_str)]
num_files = len(geojsons_ref)
if num_files == 0:
tq.write(f"\t[WARN] No files found for reference period!")
continue
else:
tq.write(f"\tFound {num_files} files during reference period.")
# Perform the time aggregation on the list of GeoJSONs
best_ref_map = do_time_aggregation(geojsons_ref,
ref_path,
permanent_water_map,
not(overwrite),
pred_mode,
head_dict)
if best_ref_map is not None:
do_update_temporal(db_conn, bucket_uri, session_code, aoi,
model_name, ref_start_date, ref_end_date,
"ref", 1, ref_path)
else:
tq.write(f"[ERR] Failed to create ref map for {aoi}, skipping.")
continue
### COMPUTE INUNDATION MAP ------------------------------------#
# Create the path to the output inundation maps
inundate_path = os.path.join(
write_aoi_path, "pre_post_products",
(f"inundate_{ref_end_date_str}"
f"_{flood_start_date_str}"
f"_{flood_end_date_str}.geojson")).replace("\\", "/")
try:
tq.write(f"\tCalculating inundation map.")
inundate_floodmap = \
postprocess.compute_pre_post_flood_water(
best_flood_map,
best_ref_map)
# Save output to GCP
tq.write(f"\tSaving innundation map to \n\t{inundate_path}")
utils.write_geojson_to_gcp(inundate_path,
inundate_floodmap)
# Update the database
do_update_temporal(db_conn, bucket_uri, session_code, aoi,
model_name, ref_start_date, flood_end_date,
"inundate", 1, inundate_path)
except Exception:
tq.write(f"[ERR] Failed to create inundation map for {aoi}!")
traceback.print_exc(file=sys.stdout)
continue
# SPATIAL AGGREGATION BLOCK ----------------------------------------------#
# Print a title
print("\n" + "="*80 + "\n")
print("Temporal aggregation complete! Proceeding to spatial aggregation.\n")
if len(aois_list) == 1:
print("[WARN] Only one grid patch found: will not perform aggregation.")
return
# Query the database for successful maps of each mode
query = (f"SELECT patch_name, mode, data_path "
f"FROM postproc_temporal "
f"WHERE session = %s AND status = %s;")
data = (session_code, 1)
temporal_df = db_conn.run_query(query, data, fetch=True)
# Reset the status in the spatial table
query = (f"UPDATE postproc_spatial "
f"SET status = %s "
f"WHERE session = %s;")
data = (0, session_code)
db_conn.run_query(query, data)
# Select the files for the FLOOD map
flood_df = temporal_df.loc[temporal_df["mode"] == "flood"]
geojsons_lst = [x for x in flood_df["data_path"].values]
num_files = len(geojsons_lst)
if num_files == 0:
print(f"\t[ERR] No flooding files to merge!")
return
else:
print(f"\tSelected {num_files} grid patches for flood map.")
# Path to final merged flood map
path_flood_merge = \
os.path.join(session_path,
(f"flood_{flood_start_date_str}_"
f"{flood_end_date_str}.geojson")).replace("\\", "/")
file_flood_gpkg = (f"flood_{session_code}_{flood_start_date_str}_"
f"{flood_end_date_str}.gpkg").replace("\\", "/")
# Perform the merge
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f"[INFO] Starting spatial merge at {now} ...")
try:
flood_map_merge = postprocess.spatial_aggregation(geojsons_lst)
flood_map_merge.to_crs(epsg=3857, inplace=True)
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f"[INFO] Finished merge at {now}.\n")
# Save the result to GCP
print(f"[INFO] Saving the final FLOOD map to GCP:\n"
f"\t{path_flood_merge}")
utils.write_geojson_to_gcp(path_flood_merge, flood_map_merge)
# Update the database
do_update_spatial(db_conn, bucket_uri, session_code,
"flood", path_flood_merge,
flood_start_date, flood_end_date)
# Save a local geopackage file
if save_gpkg:
print(f"[INFO] Saving the final FLOOD map to local GPKG:\n"
f"\t{file_flood_gpkg}")
flood_map_merge.to_file(file_flood_gpkg, driver='GPKG')
except Exception:
print("\t[ERR] Spatial merger failed!\n")
traceback.print_exc(file=sys.stdout)
if create_inundate_map:
# Select the files for the reference map
inundate_df = temporal_df.loc[temporal_df["mode"] == "inundate"]
geojsons_lst = [x for x in inundate_df["data_path"].values]
num_files = len(geojsons_lst)
if num_files == 0:
print(f"\t[ERR] No reference files to merge!")
return
else:
print(f"\tSelected {num_files} grid patches for inundation map.")
# Path to final merged flood map
path_inundate_merge = \
os.path.join(session_path,
(f"inundate_{ref_end_date_str}_"
f"{flood_start_date_str}_"
f"{flood_end_date_str}.geojson")).replace("\\", "/")
# Perform the merge
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f"[INFO] Starting spatial merge ... {now} ...")
try:
inundate_map_merge = postprocess.spatial_aggregation(geojsons_lst)
inundate_map_merge.to_crs(epsg=3857, inplace=True)
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f"[INFO] Finished merge at {now}.\n")
# Save the result to GCP
print(f"[INFO] Saving the final INUNDATION map to GCP:\n"
f"\t{path_flood_merge}")
utils.write_geojson_to_gcp(path_inundate_merge, inundate_map_merge)
# Update the database
do_update_spatial(db_conn, bucket_uri, session_code,
"inundate", path_inundate_merge,
flood_start_date, flood_end_date,
ref_start_date, ref_end_date)
except Exception:
print("\t[ERR] Spatial merger failed!\n")
traceback.print_exc(file=sys.stdout)
if __name__ == "__main__":
import argparse
desc_str = """
Compute aggregated flood-mapping products.
This script:
1) Aggregates all the flood maps between two given dates for each
chosen grid patch (temporal aggregation).
2) Aggregates all the reference maps between two given dates, for
each grid patch (optional)
3) Computes the difference between the flood and reference maps to
calculate the innundated areas (optional).
4) Joins the products in each grid patch into single files
(spatial aggregation using the 'dissolve' operation).
The script operates on polygons (the geometry column of
GeoDataframes) can take hours to complete for large areas.
"""
epilog_str = """
Copyright Trillium Technologies 2022 - 2023.
"""
ap = argparse.ArgumentParser(description=desc_str, epilog=epilog_str,
formatter_class=argparse.RawTextHelpFormatter)
ap.add_argument('--session-code', required=True,
help="Mapping session code (e.g, EMSR586).")
ap.add_argument("--path-env-file", default="../.env",
help="Path to the hidden credentials file [%(default)s].")
ap.add_argument("--collection-name",
choices=["all", "Landsat", "S2"], default="all",
help="Collections to use in the postprocessing. [%(default)s].")
ap.add_argument("--model-name",
choices=["WF2_unet_rbgiswirs", "all"], default="all",
help="Model outputs to include in the postprocessing. [%(default)s].")
ap.add_argument('--overwrite', default=False, action='store_true',
help=(f"Overwrite (re-create) existing temporal merge products.\n"
f"Default is to reload existing temporal products before "
f"performing spatial merge."))
ap.add_argument('--raster-merge', default=False, action='store_true',
help=f"Perform temporal merge step in raster-space.\n")
ap.add_argument('--save-gpkg', default=False, action='store_true',
help=f"Save a local GeoPackage flood map file.\n")
args = ap.parse_args()
main(session_code=args.session_code,
path_env_file=args.path_env_file,
collection_name=args.collection_name,
model_name=args.model_name,
overwrite=args.overwrite,
raster_merge=args.raster_merge,
save_gpkg=args.save_gpkg)