-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_cnn_rnn_v2.py
125 lines (107 loc) · 5.85 KB
/
text_cnn_rnn_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import tensorflow as tf
class TextCNNRNN(object):
def __init__(self,
hidden_unit,
max_pool_size,
sequence_length,
num_classes,
vocab_size,
embedding_size,
filter_sizes,
num_filters,
l2_reg_lambda=0.0,
pre_trained=False):
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name='input_x')
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name='input_y')
self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
self.batch_size = tf.placeholder(tf.int32, [])
self.real_len = tf.placeholder(tf.int32, [None], name='real_len')
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
if pre_trained:
W_ = tf.Variable(
tf.constant(0.0, shape=[vocab_size, embedding_size]),
trainable=False,
name='W')
self.embedding_placeholder = tf.placeholder(
tf.float32, [vocab_size, embedding_size],
name='pre_trained')
W = tf.assign(W_, self.embedding_placeholder)
else:
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
emb = tf.expand_dims(self.embedded_chars, -1)
pooled_concat = []
reduced = np.int32(np.ceil((sequence_length) * 1.0 / max_pool_size))
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(
tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(
tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
emb,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(list(filter_sizes))
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
pooled_concat = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=hidden_unit)
#lstm_cell = tf.nn.rnn_cell.GRUCell(num_units=hidden_unit)
lstm_cell = tf.contrib.rnn.GRUCell(num_units=hidden_unit)
#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=self.dropout_keep_prob)
lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=self.dropout_keep_prob)
self._initial_state = lstm_cell.zero_state(self.batch_size, tf.float32)
inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1, int(reduced), pooled_concat)]
#inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(pooled_concat,num_or_size_splits=int(reduced),axis=1)]
#outputs, state = tf.nn.rnn(lstm_cell, inputs, initial_state=self._initial_state, sequence_length=self.real_len)
outputs, state = tf.contrib.rnn.static_rnn(lstm_cell, inputs, initial_state=self._initial_state, sequence_length=self.real_len)
# Collect the appropriate last words into variable output (dimension = batch x embedding_size)
output = outputs[0]
with tf.variable_scope('Output'):
tf.get_variable_scope().reuse_variables()
one = tf.ones([1, hidden_unit], tf.float32)
for i in range(1,len(outputs)):
ind = self.real_len < (i+1)
ind = tf.to_float(ind)
ind = tf.expand_dims(ind, -1)
mat = tf.matmul(ind, one)
output = tf.add(tf.multiply(output, mat),tf.multiply(outputs[i], 1.0 - mat))
with tf.name_scope('output'):
self.W = tf.Variable(tf.truncated_normal([hidden_unit, num_classes], stddev=0.1), name='W')
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name='b')
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(output, self.W, b, name='scores')
self.predictions = tf.argmax(self.scores, 1, name='predictions')
with tf.name_scope('loss'):
losses = tf.nn.softmax_cross_entropy_with_logits_v2(labels = self.input_y, logits = self.scores) # only named arguments accepted
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
with tf.name_scope('accuracy'):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name='accuracy')
with tf.name_scope('num_correct'):
correct = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.num_correct = tf.reduce_sum(tf.cast(correct, 'float'))