forked from ContinualAI/avalanche
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstorage_policy.py
587 lines (481 loc) · 20.5 KB
/
storage_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
from collections import defaultdict
import random
from abc import ABC, abstractmethod
from typing import (
Any,
Dict,
Generic,
Optional,
List,
TYPE_CHECKING,
Set,
TypeVar,
)
import torch
from numpy import inf
from torch import cat, Tensor
from torch.nn import Module
from torch.utils.data import DataLoader
from avalanche.benchmarks.utils import (
_taskaware_classification_subset,
AvalancheDataset,
)
from avalanche.models import FeatureExtractorBackbone
from ..benchmarks.utils.utils import concat_datasets
from avalanche._annotations import deprecated
if TYPE_CHECKING:
from .templates import SupervisedTemplate, BaseSGDTemplate
class ExemplarsBuffer(ABC):
"""ABC for rehearsal buffers to store exemplars.
`self.buffer` is an AvalancheDataset of samples collected from the previous
experiences. The buffer can be updated by calling `self.update(strategy)`.
"""
def __init__(self, max_size: int):
"""Init.
:param max_size: max number of input samples in the replay memory.
"""
self.max_size = max_size
""" Maximum size of the buffer. """
self._buffer: AvalancheDataset = concat_datasets([])
@property
def buffer(self) -> AvalancheDataset:
"""Buffer of samples."""
return self._buffer
@buffer.setter
def buffer(self, new_buffer: AvalancheDataset):
self._buffer = new_buffer
@deprecated(0.7, "switch to pre_adapt and post_adapt")
def update(self, strategy: "SupervisedTemplate", **kwargs):
"""Update `self.buffer` using the `strategy` state.
:param strategy:
:param kwargs:
:return:
"""
# this should work until we deprecate self.update
self.post_adapt(strategy, strategy.experience)
def post_adapt(self, agent_state, exp):
"""Update `self.buffer` using the agent state and current experience.
:param agent_state:
:param exp:
:return:
"""
pass
@abstractmethod
def resize(self, strategy: "SupervisedTemplate", new_size: int):
"""Update the maximum size of the buffer.
:param strategy:
:param new_size:
:return:
"""
...
class ReservoirSamplingBuffer(ExemplarsBuffer):
"""Buffer updated with reservoir sampling."""
def __init__(self, max_size: int):
"""
:param max_size:
"""
# The algorithm follows
# https://en.wikipedia.org/wiki/Reservoir_sampling
# We sample a random uniform value in [0, 1] for each sample and
# choose the `size` samples with higher values.
# This is equivalent to a random selection of `size_samples`
# from the entire stream.
super().__init__(max_size)
# INVARIANT: _buffer_weights is always sorted.
self._buffer_weights = torch.zeros(0)
def post_adapt(self, agent, exp):
"""Update buffer."""
self.update_from_dataset(exp.dataset)
def update_from_dataset(self, new_data: AvalancheDataset):
"""Update the buffer using the given dataset.
:param new_data:
:return:
"""
new_weights = torch.rand(len(new_data))
cat_weights = torch.cat([new_weights, self._buffer_weights])
cat_data = new_data.concat(self.buffer)
sorted_weights, sorted_idxs = cat_weights.sort(descending=True)
buffer_idxs = sorted_idxs[: self.max_size]
self.buffer = cat_data.subset(buffer_idxs)
self._buffer_weights = sorted_weights[: self.max_size]
def resize(self, strategy: Any, new_size: int):
"""Update the maximum size of the buffer."""
self.max_size = new_size
if len(self.buffer) <= self.max_size:
return
self.buffer = self.buffer.subset(torch.arange(self.max_size))
self._buffer_weights = self._buffer_weights[: self.max_size]
TGroupBuffer = TypeVar("TGroupBuffer", bound=ExemplarsBuffer)
class BalancedExemplarsBuffer(ExemplarsBuffer, Generic[TGroupBuffer]):
"""A buffer that stores exemplars for rehearsal in separate groups.
The grouping allows to balance the data (by task, experience,
classes..). In combination with balanced data loaders, it can be used
to sample balanced mini-batches during training.
`self.buffer_groups` is a dictionary that stores each group as a
separate buffer. The buffers are updated by calling
`self.update(strategy)`.
"""
def __init__(
self, max_size: int, adaptive_size: bool = True, total_num_groups=None
):
"""
:param max_size: max number of input samples in the replay memory.
:param adaptive_size: True if max_size is divided equally over all
observed experiences (keys in replay_mem).
:param total_num_groups: If adaptive size is False, the fixed number
of groups to divide capacity over.
"""
super().__init__(max_size)
self.adaptive_size = adaptive_size
self.total_num_groups = total_num_groups
if not self.adaptive_size:
assert self.total_num_groups > 0, (
"You need to specify `total_num_groups` if " "`adaptive_size=True`."
)
else:
assert self.total_num_groups is None, (
"`total_num_groups` is not compatible with " "`adaptive_size=False`."
)
self.buffer_groups: Dict[int, TGroupBuffer] = {}
""" Dictionary of buffers. """
@property
def buffer_datasets(self):
"""Return group buffers as a list of `AvalancheDataset`s."""
return [g.buffer for g in self.buffer_groups.values()]
def get_group_lengths(self, num_groups):
"""Compute groups lengths given the number of groups `num_groups`."""
if self.adaptive_size:
lengths = [self.max_size // num_groups for _ in range(num_groups)]
# distribute remaining size among experiences.
rem = self.max_size - sum(lengths)
for i in range(rem):
lengths[i] += 1
else:
lengths = [
self.max_size // self.total_num_groups for _ in range(num_groups)
]
return lengths
@property
def buffer(self):
return concat_datasets([g.buffer for g in self.buffer_groups.values()])
@buffer.setter
def buffer(self, new_buffer):
assert NotImplementedError(
"Cannot set `self.buffer` for this class. "
"You should modify `self.buffer_groups instead."
)
def resize(self, strategy, new_size):
"""Update the maximum size of the buffers."""
self.max_size = new_size
lens = self.get_group_lengths(len(self.buffer_groups))
for ll, buffer in zip(lens, self.buffer_groups.values()):
buffer.resize(strategy, ll)
class ExperienceBalancedBuffer(BalancedExemplarsBuffer[ReservoirSamplingBuffer]):
"""Rehearsal buffer with samples balanced over experiences.
The number of experiences can be fixed up front or adaptive, based on
the 'adaptive_size' attribute. When adaptive, the memory is equally
divided over all the unique observed experiences so far.
"""
def __init__(self, max_size: int, adaptive_size: bool = True, num_experiences=None):
"""
:param max_size: max number of total input samples in the replay
memory.
:param adaptive_size: True if mem_size is divided equally over all
observed experiences (keys in replay_mem).
:param num_experiences: If adaptive size is False, the fixed number
of experiences to divide capacity over.
"""
super().__init__(max_size, adaptive_size, num_experiences)
self._num_exps = 0
def post_adapt(self, agent, exp):
self._num_exps += 1
new_data = exp.dataset
lens = self.get_group_lengths(self._num_exps)
new_buffer = ReservoirSamplingBuffer(lens[-1])
new_buffer.update_from_dataset(new_data)
self.buffer_groups[self._num_exps - 1] = new_buffer
for ll, b in zip(lens, self.buffer_groups.values()):
b.resize(agent, ll)
class ClassBalancedBuffer(BalancedExemplarsBuffer[ReservoirSamplingBuffer]):
"""Stores samples for replay, equally divided over classes.
There is a separate buffer updated by reservoir sampling for each class.
It should be called in the 'after_training_exp' phase (see
ExperienceBalancedStoragePolicy).
The number of classes can be fixed up front or adaptive, based on
the 'adaptive_size' attribute. When adaptive, the memory is equally
divided over all the unique observed classes so far.
"""
def __init__(
self,
max_size: int,
adaptive_size: bool = True,
total_num_classes: Optional[int] = None,
):
"""Init.
:param max_size: The max capacity of the replay memory.
:param adaptive_size: True if mem_size is divided equally over all
observed experiences (keys in replay_mem).
:param total_num_classes: If adaptive size is False, the fixed number
of classes to divide capacity over.
"""
if not adaptive_size:
assert total_num_classes is not None and (
total_num_classes > 0
), """When fixed exp mem size, total_num_classes should be > 0."""
super().__init__(max_size, adaptive_size, total_num_classes)
self.adaptive_size = adaptive_size
self.total_num_classes = total_num_classes
self.seen_classes: Set[int] = set()
def post_adapt(self, agent, exp):
"""Update buffer."""
self.update_from_dataset(exp.dataset, agent)
def update_from_dataset(
self, new_data: AvalancheDataset, strategy: Optional["BaseSGDTemplate"] = None
):
if len(new_data) == 0:
return
targets = getattr(new_data, "targets", None)
assert targets is not None
# Get sample idxs per class
cl_idxs: Dict[int, List[int]] = defaultdict(list)
for idx, target in enumerate(targets):
# Conversion to int may fix issues when target
# is a single-element torch.tensor
target = int(target)
cl_idxs[target].append(idx)
# Make AvalancheSubset per class
cl_datasets = {}
for c, c_idxs in cl_idxs.items():
cl_datasets[c] = _taskaware_classification_subset(new_data, indices=c_idxs)
# Update seen classes
self.seen_classes.update(cl_datasets.keys())
# associate lengths to classes
lens = self.get_group_lengths(len(self.seen_classes))
class_to_len = {}
for class_id, ll in zip(self.seen_classes, lens):
class_to_len[class_id] = ll
# update buffers with new data
for class_id, new_data_c in cl_datasets.items():
ll = class_to_len[class_id]
if class_id in self.buffer_groups:
old_buffer_c = self.buffer_groups[class_id]
old_buffer_c.update_from_dataset(new_data_c)
old_buffer_c.resize(strategy, ll)
else:
new_buffer = ReservoirSamplingBuffer(ll)
new_buffer.update_from_dataset(new_data_c)
self.buffer_groups[class_id] = new_buffer
# resize buffers
for class_id, class_buf in self.buffer_groups.items():
self.buffer_groups[class_id].resize(strategy, class_to_len[class_id])
class ParametricBuffer(BalancedExemplarsBuffer):
"""Stores samples for replay using a custom selection strategy and
grouping."""
def __init__(
self,
max_size: int,
groupby=None,
selection_strategy: Optional["ExemplarsSelectionStrategy"] = None,
):
"""Init.
:param max_size: The max capacity of the replay memory.
:param groupby: Grouping mechanism. One of {None, 'class', 'task',
'experience'}.
:param selection_strategy: The strategy used to select exemplars to
keep in memory when cutting it off.
"""
super().__init__(max_size)
assert groupby in {None, "task", "class", "experience"}, (
"Unknown grouping scheme. Must be one of {None, 'task', "
"'class', 'experience'}"
)
self.groupby = groupby
ss = selection_strategy or RandomExemplarsSelectionStrategy()
self.selection_strategy = ss
self.seen_groups: Set[int] = set()
self._curr_strategy = None
def post_adapt(self, agent, exp):
new_data: AvalancheDataset = exp.dataset
new_groups = self._make_groups(agent, new_data)
self.seen_groups.update(new_groups.keys())
# associate lengths to classes
lens = self.get_group_lengths(len(self.seen_groups))
group_to_len = {}
for group_id, ll in zip(self.seen_groups, lens):
group_to_len[group_id] = ll
# update buffers with new data
for group_id, new_data_g in new_groups.items():
ll = group_to_len[group_id]
if group_id in self.buffer_groups:
old_buffer_g = self.buffer_groups[group_id]
old_buffer_g.update_from_dataset(agent, new_data_g)
old_buffer_g.resize(agent, ll)
else:
new_buffer = _ParametricSingleBuffer(ll, self.selection_strategy)
new_buffer.update_from_dataset(agent, new_data_g)
self.buffer_groups[group_id] = new_buffer
# resize buffers
for group_id, class_buf in self.buffer_groups.items():
self.buffer_groups[group_id].resize(agent, group_to_len[group_id])
def _make_groups(
self, strategy, data: AvalancheDataset
) -> Dict[int, AvalancheDataset]:
"""Split the data by group according to `self.groupby`."""
if self.groupby is None:
return {0: data}
elif self.groupby == "task":
return self._split_by_task(data)
elif self.groupby == "experience":
return self._split_by_experience(strategy, data)
elif self.groupby == "class":
return self._split_by_class(data)
else:
assert False, "Invalid groupby key. Should never get here."
def _split_by_class(self, data: AvalancheDataset) -> Dict[int, AvalancheDataset]:
# Get sample idxs per class
cl_idxs: Dict[int, List[int]] = defaultdict(list)
targets = getattr(data, "targets")
for idx, target in enumerate(targets):
target = int(target)
cl_idxs[target].append(idx)
# Make AvalancheSubset per class
new_groups: Dict[int, AvalancheDataset] = {}
for c, c_idxs in cl_idxs.items():
new_groups[c] = _taskaware_classification_subset(data, indices=c_idxs)
return new_groups
def _split_by_experience(
self, strategy, data: AvalancheDataset
) -> Dict[int, AvalancheDataset]:
exp_id = strategy.clock.train_exp_counter + 1
return {exp_id: data}
def _split_by_task(self, data: AvalancheDataset) -> Dict[int, AvalancheDataset]:
new_groups = {}
task_set = getattr(data, "task_set")
for task_id in task_set:
new_groups[task_id] = task_set[task_id]
return new_groups
class _ParametricSingleBuffer(ExemplarsBuffer):
"""A buffer that stores samples for replay using a custom selection
strategy.
This is a private class. Use `ParametricBalancedBuffer` with
`groupby=None` to get the same behavior.
"""
def __init__(
self,
max_size: int,
selection_strategy: Optional["ExemplarsSelectionStrategy"] = None,
):
"""
:param max_size: The max capacity of the replay memory.
:param selection_strategy: The strategy used to select exemplars to
keep in memory when cutting it off.
"""
super().__init__(max_size)
ss = selection_strategy or RandomExemplarsSelectionStrategy()
self.selection_strategy = ss
self._curr_strategy = None
def update(self, strategy: "SupervisedTemplate", **kwargs):
assert strategy.experience is not None
new_data = strategy.experience.dataset
self.update_from_dataset(strategy, new_data)
def update_from_dataset(self, strategy, new_data):
if len(self.buffer) == 0:
self.buffer = new_data
else:
self.buffer = self.buffer.concat(new_data)
self.resize(strategy, self.max_size)
def resize(self, strategy, new_size: int):
self.max_size = new_size
idxs = self.selection_strategy.make_sorted_indices(
strategy=strategy, data=self.buffer
)
self.buffer = self.buffer.subset(idxs[: self.max_size])
class ExemplarsSelectionStrategy(ABC):
"""
Base class to define how to select a subset of exemplars from a dataset.
"""
@abstractmethod
def make_sorted_indices(
self, strategy: "SupervisedTemplate", data: AvalancheDataset
) -> List[int]:
"""
Should return the sorted list of indices to keep as exemplars.
The last indices will be the first to be removed when cutoff memory.
"""
...
class RandomExemplarsSelectionStrategy(ExemplarsSelectionStrategy):
"""Select the exemplars at random in the dataset"""
def make_sorted_indices(
self, strategy: "SupervisedTemplate", data: AvalancheDataset
) -> List[int]:
indices = list(range(len(data)))
random.shuffle(indices)
return indices
class FeatureBasedExemplarsSelectionStrategy(ExemplarsSelectionStrategy, ABC):
"""Base class to select exemplars from their features"""
def __init__(self, model: Module, layer_name: str):
self.feature_extractor = FeatureExtractorBackbone(model, layer_name)
@torch.no_grad()
def make_sorted_indices(
self, strategy: "SupervisedTemplate", data: AvalancheDataset
) -> List[int]:
self.feature_extractor.eval()
collate_fn = data.collate_fn if hasattr(data, "collate_fn") else None
features = cat(
[
self.feature_extractor(x.to(strategy.device))
for x, *_ in DataLoader(
data,
collate_fn=collate_fn,
batch_size=strategy.eval_mb_size,
)
]
)
return self.make_sorted_indices_from_features(features)
@abstractmethod
def make_sorted_indices_from_features(self, features: Tensor) -> List[int]:
"""
Should return the sorted list of indices to keep as exemplars.
The last indices will be the first to be removed when cutoff memory.
"""
class HerdingSelectionStrategy(FeatureBasedExemplarsSelectionStrategy):
"""The herding strategy as described in iCaRL.
It is a greedy algorithm, that select the remaining exemplar that get
the center of already selected exemplars as close as possible as the
center of all elements (in the feature space).
"""
def make_sorted_indices_from_features(self, features: Tensor) -> List[int]:
selected_indices: List[int] = []
center = features.mean(dim=0)
current_center = center * 0
for i in range(len(features)):
# Compute distances with real center
candidate_centers = current_center * i / (i + 1) + features / (i + 1)
distances = pow(candidate_centers - center, 2).sum(dim=1)
distances[selected_indices] = inf
# Select best candidate
new_index = distances.argmin().tolist()
selected_indices.append(new_index)
current_center = candidate_centers[new_index]
return selected_indices
class ClosestToCenterSelectionStrategy(FeatureBasedExemplarsSelectionStrategy):
"""A greedy algorithm that selects the remaining exemplar that is the
closest to the center of all elements (in feature space).
"""
def make_sorted_indices_from_features(self, features: Tensor) -> List[int]:
center = features.mean(dim=0)
distances = pow(features - center, 2).sum(dim=1)
return distances.argsort()
__all__ = [
"ExemplarsBuffer",
"ReservoirSamplingBuffer",
"BalancedExemplarsBuffer",
"ExperienceBalancedBuffer",
"ClassBalancedBuffer",
"ParametricBuffer",
"ExemplarsSelectionStrategy",
"RandomExemplarsSelectionStrategy",
"FeatureBasedExemplarsSelectionStrategy",
"HerdingSelectionStrategy",
"ClosestToCenterSelectionStrategy",
]