-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_repos.py
75 lines (61 loc) · 2.75 KB
/
index_repos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# from: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/pgvector.html
from io import StringIO
from typing import List
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
# from: https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/markdown.html
from langchain.document_loaders import UnstructuredFileIOLoader
import langchain.vectorstores.pgvector
from unstructured.__version__ import __version__ as __unstructured_version__ # type: ignore
from unstructured.partition.md import partition_md # type: ignore
import os
from langchain_demo.repo_info import get_repo_list
from langchain_demo.repo_to_md import repository_info_to_markdown
import sys
# Based on UnstructuredMarkdownLoader
class UnstructuredMarkdownIOLoader(UnstructuredFileIOLoader):
"""Loader that uses unstructured to load markdown files."""
def _get_elements(self) -> List:
_unstructured_version = __unstructured_version__.split("-")[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.split(".")])
if unstructured_version < (0, 4, 16):
raise ValueError(
f"You are on unstructured version {__unstructured_version__}. "
"Partitioning markdown files is only supported in unstructured>=0.4.16."
)
return partition_md(file=self.file, **self.unstructured_kwargs)
def save_embedding(collection_name, namespace, repository, md):
loader = UnstructuredMarkdownIOLoader(StringIO(md))
documents = loader.load()
# add metadata to documents
for d in documents:
d.metadata["namespace"] = namespace
d.metadata["repository"] = repository
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
langchain.vectorstores.pgvector.PGVector.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=os.environ["PG_CONN_STR_LOCAL"],
)
print(
f"saved embeddings for {len(docs)} document fragments describing repo {namespace}/{repository}"
)
def main():
repo_index_limit = (
None # set repo_index_limit to an integer to only index the first N repos
)
collection_name = "repo_embeddings"
namespace = sys.argv[1]
print(f"Indexing repositories in namespace {namespace}")
repo_list = get_repo_list(namespace)
for repo_info in repo_list[0:repo_index_limit]:
save_embedding(
collection_name,
repo_info["namespace"],
repo_info["repository"],
repository_info_to_markdown(repo_info),
)
main()