-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParticleRigidityCalculationTools.py
132 lines (87 loc) · 5.61 KB
/
ParticleRigidityCalculationTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import decimal as dec
import numpy as np
import pandas as pd
onekftinkm = 0.3048
protonRestMass = dec.Decimal(1.67262192e-27) #kg
chargeOfElectron = dec.Decimal(1.60217663e-19) #C
c = dec.Decimal(299792458.0) #m/s
def allowForNonSeriesInputArgs(functionToModify):
def functionWithGeneralInputArgs(*args, **kwargs):
newArgs = []
for inputArg in args:
if type(inputArg) == pd.Series:
newArg = inputArg
elif type(inputArg) in [int, float]:
newArg = pd.Series([inputArg])
else:
newArg = pd.Series(inputArg)
newArgs.append(newArg)
result = functionToModify(*newArgs, **kwargs)
return result
return functionWithGeneralInputArgs
def getAtomicMass(atomicNumber):
A = [1.0, 4.0, 6.9, 9.0, 10.8, 12.0, 14.0, 16.0, 19.0, 20.2,\
23.0, 24.3, 27.0, 28.1, 31.0, 32.1, 35.4, 39.9, 39.1, 40.1,\
44.9, 47.9, 50.9, 52.0, 54.9, 55.8, 58.9, 58.7, 63.5, 65.4,\
69.7, 72.6, 74.9, 79.0, 79.9, 83.8, 85.5, 87.6, 88.9, 91.2,\
92.9, 95.9, 97.0,101.0,102.9,106.4,107.9,112.4,114.8,118.7,\
121.8,127.6,126.9,131.3,132.9,137.3,138.9,140.1,140.9,144.2,\
145.0,150.4,152.0,157.3,158.3,162.5,164.9,167.3,168.9,173.0,\
175.0,178.5,180.9,183.9,186.2,190.2,192.2,195.1,197.0,200.6,\
204.4,207.2,209.0,209.0,210.0,222.0,223.0,226.0,227.0,232.0,\
231.0,238.0]
if ( atomicNumber < 0 ):
atomicMass = 1.0 # handle case for electron
elif (atomicNumber <= 92):
atomicMass = A[atomicNumber-1] # look up table for other elements.
else:
atomicMass = 0.0 # just in case
return atomicMass
def determineParticleAttributes(particleMassAU, particleChargeAU):
m0 = dec.Decimal(particleMassAU) * protonRestMass #kg
particleCharge = dec.Decimal(particleChargeAU) * chargeOfElectron #C
particleRestEnergy = m0 * (c**2)
return particleCharge,particleRestEnergy
@allowForNonSeriesInputArgs
def convertParticleEnergyToRigidity(particleKineticEnergyInMeV:pd.Series, particleMassAU = 1, particleChargeAU = 1):
particleCharge, particleRestEnergy = determineParticleAttributes(particleMassAU, particleChargeAU)
particleKineticEnergyInJoules = particleKineticEnergyInMeV.apply(dec.Decimal) * chargeOfElectron * dec.Decimal(1e6)
totalParticleEnergy = particleKineticEnergyInJoules + particleRestEnergy
pc = np.sqrt((totalParticleEnergy**2) - (particleRestEnergy**2))
#rigidity = pc / particleCharge
rigidityInGV = (pc / dec.Decimal(particleCharge)) * dec.Decimal(1e-9)
return rigidityInGV.apply(float)
@allowForNonSeriesInputArgs
def convertParticleRigidityToEnergy(particleRigidityInGV:pd.Series, particleMassAU = 1, particleChargeAU = 1):
particleCharge, particleRestEnergy = determineParticleAttributes(particleMassAU, particleChargeAU)
pc = particleRigidityInGV.apply(dec.Decimal) * particleCharge * dec.Decimal(1e9)
totalParticleEnergy = np.sqrt((pc**2) + (particleRestEnergy**2))
particleKEinJoules = totalParticleEnergy - particleRestEnergy
KEinMeV = particleKEinJoules / (chargeOfElectron * dec.Decimal(1e6))
return KEinMeV.apply(float)
def calculate_dKEoverdR(particleKineticEnergyInMeV:pd.Series, particleChargeInCoulombs, particleRestEnergy):
particleKineticEnergyInJoules = particleKineticEnergyInMeV.apply(dec.Decimal) * chargeOfElectron * dec.Decimal(1e6)
totalParticleEnergy = particleKineticEnergyInJoules + particleRestEnergy
pc = np.sqrt((totalParticleEnergy**2) - (particleRestEnergy**2)) # units of pc are in joules
#fullFactor = pc/particleKineticEnergyInJoules
fullFactor = pc/totalParticleEnergy
dKEInMeV_drigidityInGV = fullFactor * particleChargeInCoulombs * dec.Decimal(1e9) / (chargeOfElectron * dec.Decimal(1e6))
return dKEInMeV_drigidityInGV # output units are in milli electron charges
@allowForNonSeriesInputArgs
def convertParticleEnergySpecToRigiditySpec(particleKineticEnergyInMeV:pd.Series, fluxInEnergyMeVform:pd.Series, particleMassAU = 1, particleChargeAU = 1):
particleCharge, particleRestEnergy = determineParticleAttributes(particleMassAU, particleChargeAU)
dKEInMeV_drigidityInGV = calculate_dKEoverdR(particleKineticEnergyInMeV, particleCharge, particleRestEnergy)
outputRigidities = convertParticleEnergyToRigidity(particleKineticEnergyInMeV, particleMassAU = particleMassAU, particleChargeAU = particleChargeAU)
outputRigiditySpectrum = (dKEInMeV_drigidityInGV * fluxInEnergyMeVform.apply(dec.Decimal)).apply(float)
outputDataFrame = pd.DataFrame({"Rigidity":outputRigidities, "Rigidity distribution values":outputRigiditySpectrum})
return outputDataFrame.map(float)
@allowForNonSeriesInputArgs
def convertParticleRigiditySpecToEnergySpec(particleRigidityInGV:pd.Series, fluxInRigidityGVform:pd.Series, particleMassAU = 1, particleChargeAU = 1):
particleCharge, particleRestEnergy = determineParticleAttributes(particleMassAU, particleChargeAU)
particleKineticEnergyInMeV = convertParticleRigidityToEnergy(particleRigidityInGV, particleMassAU = particleMassAU, particleChargeAU = particleChargeAU).apply(dec.Decimal)
dKEInMeV_drigidityInGV = calculate_dKEoverdR(particleKineticEnergyInMeV, particleCharge, particleRestEnergy)
outputEnergies = particleKineticEnergyInMeV
dKEInMeV_drigidityInGV.replace(dec.Decimal(0),dec.Decimal(np.nan),inplace=True)
outputEnergySpectrum = (fluxInRigidityGVform.apply(dec.Decimal) / dKEInMeV_drigidityInGV).apply(float)
outputDataFrame = pd.DataFrame({"Energy":outputEnergies, "Energy distribution values":outputEnergySpectrum})
return outputDataFrame.map(float)