-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
65 lines (56 loc) · 2.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
import torch.nn
from options.train_options import TrainOptions
from data import create_dataloader
from models import create_model
from utils.util import SaveResults
from utils import dataset_util, util
import numpy as np
import cv2
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(0)
if __name__ == '__main__':
opt = TrainOptions().parse()
train_data_loader = create_dataloader(opt)
train_dataset_size = len(train_data_loader)
print('#training images = %d' % train_dataset_size)
model = create_model(opt)
model.setup(opt)
save_results = SaveResults(opt)
total_steps = 0
lr = opt.lr_task
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
# training
print("training stage (epoch: %s) starting...................." % epoch)
for ind, data in enumerate(train_data_loader):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.print_freq == 0:
losses = model.get_current_losses()
t = (time.time() - iter_start_time) / opt.batchSize
save_results.print_current_losses(epoch, epoch_iter, lr, losses, t, t_data)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
if total_steps % opt.save_result_freq == 0:
save_results.save_current_results(model.get_current_visuals(), epoch)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
lr = model.update_learning_rate()