-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfile_prefetch_buffer.cc
641 lines (571 loc) · 24 KB
/
file_prefetch_buffer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "file/file_prefetch_buffer.h"
#include <algorithm>
#include "file/random_access_file_reader.h"
#include "monitoring/histogram.h"
#include "monitoring/iostats_context_imp.h"
#include "port/port.h"
#include "test_util/sync_point.h"
#include "util/random.h"
#include "util/rate_limiter.h"
namespace ROCKSDB_NAMESPACE {
void FilePrefetchBuffer::CalculateOffsetAndLen(size_t alignment,
uint64_t offset,
size_t roundup_len, size_t index,
bool refit_tail,
uint64_t& chunk_len) {
uint64_t chunk_offset_in_buffer = 0;
bool copy_data_to_new_buffer = false;
// Check if requested bytes are in the existing buffer_.
// If only a few bytes exist -- reuse them & read only what is really needed.
// This is typically the case of incremental reading of data.
// If no bytes exist in buffer -- full pread.
if (bufs_[index].buffer_.CurrentSize() > 0 &&
offset >= bufs_[index].offset_ &&
offset <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) {
// Only a few requested bytes are in the buffer. memmove those chunk of
// bytes to the beginning, and memcpy them back into the new buffer if a
// new buffer is created.
chunk_offset_in_buffer = Rounddown(
static_cast<size_t>(offset - bufs_[index].offset_), alignment);
chunk_len = static_cast<uint64_t>(bufs_[index].buffer_.CurrentSize()) -
chunk_offset_in_buffer;
assert(chunk_offset_in_buffer % alignment == 0);
// assert(chunk_len % alignment == 0);
assert(chunk_offset_in_buffer + chunk_len <=
bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize());
if (chunk_len > 0) {
copy_data_to_new_buffer = true;
} else {
// this reset is not necessary, but just to be safe.
chunk_offset_in_buffer = 0;
}
}
// Create a new buffer only if current capacity is not sufficient, and memcopy
// bytes from old buffer if needed (i.e., if chunk_len is greater than 0).
if (bufs_[index].buffer_.Capacity() < roundup_len) {
bufs_[index].buffer_.Alignment(alignment);
bufs_[index].buffer_.AllocateNewBuffer(
static_cast<size_t>(roundup_len), copy_data_to_new_buffer,
chunk_offset_in_buffer, static_cast<size_t>(chunk_len));
} else if (chunk_len > 0 && refit_tail) {
// New buffer not needed. But memmove bytes from tail to the beginning since
// chunk_len is greater than 0.
bufs_[index].buffer_.RefitTail(static_cast<size_t>(chunk_offset_in_buffer),
static_cast<size_t>(chunk_len));
} else if (chunk_len > 0) {
// For async prefetching, it doesn't call RefitTail with chunk_len > 0.
// Allocate new buffer if needed because aligned buffer calculate remaining
// buffer as capacity_ - cursize_ which might not be the case in this as we
// are not refitting.
// TODO akanksha: Update the condition when asynchronous prefetching is
// stable.
bufs_[index].buffer_.Alignment(alignment);
bufs_[index].buffer_.AllocateNewBuffer(
static_cast<size_t>(roundup_len), copy_data_to_new_buffer,
chunk_offset_in_buffer, static_cast<size_t>(chunk_len));
}
}
Status FilePrefetchBuffer::Read(const IOOptions& opts,
RandomAccessFileReader* reader,
Env::IOPriority rate_limiter_priority,
uint64_t read_len, uint64_t chunk_len,
uint64_t rounddown_start, uint32_t index) {
Slice result;
Status s = reader->Read(opts, rounddown_start + chunk_len, read_len, &result,
bufs_[index].buffer_.BufferStart() + chunk_len,
nullptr, rate_limiter_priority);
#ifndef NDEBUG
if (result.size() < read_len) {
// Fake an IO error to force db_stress fault injection to ignore
// truncated read errors
IGNORE_STATUS_IF_ERROR(Status::IOError());
}
#endif
if (!s.ok()) {
return s;
}
// Update the buffer offset and size.
bufs_[index].offset_ = rounddown_start;
bufs_[index].buffer_.Size(static_cast<size_t>(chunk_len) + result.size());
return s;
}
Status FilePrefetchBuffer::ReadAsync(const IOOptions& opts,
RandomAccessFileReader* reader,
Env::IOPriority rate_limiter_priority,
uint64_t read_len, uint64_t chunk_len,
uint64_t rounddown_start, uint32_t index) {
// callback for async read request.
auto fp = std::bind(&FilePrefetchBuffer::PrefetchAsyncCallback, this,
std::placeholders::_1, std::placeholders::_2);
FSReadRequest req;
Slice result;
req.len = read_len;
req.offset = rounddown_start + chunk_len;
req.result = result;
req.scratch = bufs_[index].buffer_.BufferStart() + chunk_len;
Status s = reader->ReadAsync(req, opts, fp, nullptr /*cb_arg*/, &io_handle_,
&del_fn_, rate_limiter_priority);
req.status.PermitUncheckedError();
if (s.ok()) {
async_read_in_progress_ = true;
}
return s;
}
Status FilePrefetchBuffer::Prefetch(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t n,
Env::IOPriority rate_limiter_priority) {
if (!enable_ || reader == nullptr) {
return Status::OK();
}
TEST_SYNC_POINT("FilePrefetchBuffer::Prefetch:Start");
if (offset + n <= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
// All requested bytes are already in the curr_ buffer. So no need to Read
// again.
return Status::OK();
}
size_t alignment = reader->file()->GetRequiredBufferAlignment();
size_t offset_ = static_cast<size_t>(offset);
uint64_t rounddown_offset = Rounddown(offset_, alignment);
uint64_t roundup_end = Roundup(offset_ + n, alignment);
uint64_t roundup_len = roundup_end - rounddown_offset;
assert(roundup_len >= alignment);
assert(roundup_len % alignment == 0);
uint64_t chunk_len = 0;
CalculateOffsetAndLen(alignment, offset, roundup_len, curr_,
true /*refit_tail*/, chunk_len);
size_t read_len = static_cast<size_t>(roundup_len - chunk_len);
Status s = Read(opts, reader, rate_limiter_priority, read_len, chunk_len,
rounddown_offset, curr_);
return s;
}
// Copy data from src to third buffer.
void FilePrefetchBuffer::CopyDataToBuffer(uint32_t src, uint64_t& offset,
size_t& length) {
if (length == 0) {
return;
}
uint64_t copy_offset = (offset - bufs_[src].offset_);
size_t copy_len = 0;
if (offset + length <=
bufs_[src].offset_ + bufs_[src].buffer_.CurrentSize()) {
// All the bytes are in src.
copy_len = length;
} else {
copy_len = bufs_[src].buffer_.CurrentSize() - copy_offset;
}
memcpy(bufs_[2].buffer_.BufferStart() + bufs_[2].buffer_.CurrentSize(),
bufs_[src].buffer_.BufferStart() + copy_offset, copy_len);
bufs_[2].buffer_.Size(bufs_[2].buffer_.CurrentSize() + copy_len);
// Update offset and length.
offset += copy_len;
length -= copy_len;
// length > 0 indicates it has consumed all data from the src buffer and it
// still needs to read more other buffer.
if (length > 0) {
bufs_[src].buffer_.Clear();
}
}
void FilePrefetchBuffer::PollAndUpdateBuffersIfNeeded(uint64_t offset) {
if (async_read_in_progress_ && fs_ != nullptr) {
// Wait for prefetch data to complete.
// No mutex is needed as PrefetchAsyncCallback updates the result in second
// buffer and FilePrefetchBuffer should wait for Poll before accessing the
// second buffer.
std::vector<void*> handles;
handles.emplace_back(io_handle_);
StopWatch sw(clock_, stats_, POLL_WAIT_MICROS);
fs_->Poll(handles, 1).PermitUncheckedError();
}
// Reset and Release io_handle_ after the Poll API as request has been
// completed.
async_read_in_progress_ = false;
if (io_handle_ != nullptr && del_fn_ != nullptr) {
del_fn_(io_handle_);
io_handle_ = nullptr;
del_fn_ = nullptr;
}
// Index of second buffer.
uint32_t second = curr_ ^ 1;
// First clear the buffers if it contains outdated data. Outdated data can be
// because previous sequential reads were read from the cache instead of these
// buffer.
{
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
offset >= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
bufs_[curr_].buffer_.Clear();
}
if (bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) {
bufs_[second].buffer_.Clear();
}
}
// If data is in second buffer, make it curr_. Second buffer can be either
// partial filled or full.
if (bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[second].offset_ &&
offset < bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) {
// Clear the curr_ as buffers have been swapped and curr_ contains the
// outdated data and switch the buffers.
bufs_[curr_].buffer_.Clear();
curr_ = curr_ ^ 1;
}
}
// If async_read = true:
// async_read is enabled in case of sequential reads. So when
// buffers are switched, we clear the curr_ buffer as we assume the data has
// been consumed because of sequential reads.
//
// Scenarios for prefetching asynchronously:
// Case1: If both buffers are empty, prefetch n bytes
// synchronously in curr_
// and prefetch readahead_size_/2 async in second buffer.
// Case2: If second buffer has partial or full data, make it current and
// prefetch readahead_size_/2 async in second buffer. In case of
// partial data, prefetch remaining bytes from size n synchronously to
// fulfill the requested bytes request.
// Case3: If curr_ has partial data, prefetch remaining bytes from size n
// synchronously in curr_ to fulfill the requested bytes request and
// prefetch readahead_size_/2 bytes async in second buffer.
// Case4: If data is in both buffers, copy requested data from curr_ and second
// buffer to third buffer. If all requested bytes have been copied, do
// the asynchronous prefetching in second buffer.
Status FilePrefetchBuffer::PrefetchAsyncInternal(
const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset,
size_t length, size_t readahead_size, Env::IOPriority rate_limiter_priority,
bool& copy_to_third_buffer) {
if (!enable_) {
return Status::OK();
}
TEST_SYNC_POINT("FilePrefetchBuffer::PrefetchAsyncInternal:Start");
PollAndUpdateBuffersIfNeeded(offset);
// If all the requested bytes are in curr_, it will go for async prefetching
// only.
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
offset + length <=
bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
offset += length;
length = 0;
}
Status s;
size_t prefetch_size = length + readahead_size;
size_t alignment = reader->file()->GetRequiredBufferAlignment();
// Index of second buffer.
uint32_t second = curr_ ^ 1;
// Data is overlapping i.e. some of the data is in curr_ buffer and remaining
// in second buffer.
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[curr_].offset_ &&
offset < bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize() &&
offset + length > bufs_[second].offset_) {
// Allocate new buffer to third buffer;
bufs_[2].buffer_.Clear();
bufs_[2].buffer_.Alignment(alignment);
bufs_[2].buffer_.AllocateNewBuffer(length);
bufs_[2].offset_ = offset;
copy_to_third_buffer = true;
// Move data from curr_ buffer to third.
CopyDataToBuffer(curr_, offset, length);
if (length == 0) {
// Requested data has been copied and curr_ still has unconsumed data.
return s;
}
CopyDataToBuffer(second, offset, length);
// Length == 0: All the requested data has been copied to third buffer. It
// should go for only async prefetching.
// Length > 0: More data needs to be consumed so it will continue async and
// sync prefetching and copy the remaining data to third buffer in the end.
// swap the buffers.
curr_ = curr_ ^ 1;
// Update prefetch_size as length has been updated in CopyDataToBuffer.
prefetch_size = length + readahead_size;
}
size_t _offset = static_cast<size_t>(offset);
second = curr_ ^ 1;
// offset and size alignment for curr_ buffer with synchronous prefetching
uint64_t rounddown_start1 = Rounddown(_offset, alignment);
uint64_t roundup_end1 = Roundup(_offset + prefetch_size, alignment);
uint64_t roundup_len1 = roundup_end1 - rounddown_start1;
assert(roundup_len1 >= alignment);
assert(roundup_len1 % alignment == 0);
uint64_t chunk_len1 = 0;
uint64_t read_len1 = 0;
// For length == 0, skip the synchronous prefetching. read_len1 will be 0.
if (length > 0) {
CalculateOffsetAndLen(alignment, offset, roundup_len1, curr_,
false /*refit_tail*/, chunk_len1);
assert(roundup_len1 >= chunk_len1);
read_len1 = static_cast<size_t>(roundup_len1 - chunk_len1);
}
{
// offset and size alignment for second buffer for asynchronous
// prefetching
uint64_t rounddown_start2 = roundup_end1;
uint64_t roundup_end2 =
Roundup(rounddown_start2 + readahead_size, alignment);
// For length == 0, do the asynchronous prefetching in second instead of
// synchronous prefetching in curr_.
if (length == 0) {
rounddown_start2 =
bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize();
roundup_end2 = Roundup(rounddown_start2 + prefetch_size, alignment);
}
uint64_t roundup_len2 = roundup_end2 - rounddown_start2;
uint64_t chunk_len2 = 0;
CalculateOffsetAndLen(alignment, rounddown_start2, roundup_len2, second,
false /*refit_tail*/, chunk_len2);
// Update the buffer offset.
bufs_[second].offset_ = rounddown_start2;
assert(roundup_len2 >= chunk_len2);
uint64_t read_len2 = static_cast<size_t>(roundup_len2 - chunk_len2);
ReadAsync(opts, reader, rate_limiter_priority, read_len2, chunk_len2,
rounddown_start2, second)
.PermitUncheckedError();
}
if (read_len1 > 0) {
s = Read(opts, reader, rate_limiter_priority, read_len1, chunk_len1,
rounddown_start1, curr_);
if (!s.ok()) {
return s;
}
}
// Copy remaining requested bytes to third_buffer.
if (copy_to_third_buffer && length > 0) {
CopyDataToBuffer(curr_, offset, length);
}
return s;
}
bool FilePrefetchBuffer::TryReadFromCache(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t n,
Slice* result, Status* status,
Env::IOPriority rate_limiter_priority,
bool for_compaction /* = false */) {
if (track_min_offset_ && offset < min_offset_read_) {
min_offset_read_ = static_cast<size_t>(offset);
}
if (!enable_ || (offset < bufs_[curr_].offset_)) {
return false;
}
// If the buffer contains only a few of the requested bytes:
// If readahead is enabled: prefetch the remaining bytes + readahead bytes
// and satisfy the request.
// If readahead is not enabled: return false.
TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache",
&readahead_size_);
if (offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
if (readahead_size_ > 0) {
Status s;
assert(reader != nullptr);
assert(max_readahead_size_ >= readahead_size_);
if (for_compaction) {
s = Prefetch(opts, reader, offset, std::max(n, readahead_size_),
rate_limiter_priority);
} else {
if (implicit_auto_readahead_) {
if (!IsEligibleForPrefetch(offset, n)) {
// Ignore status as Prefetch is not called.
s.PermitUncheckedError();
return false;
}
}
s = Prefetch(opts, reader, offset, n + readahead_size_,
rate_limiter_priority);
}
if (!s.ok()) {
if (status) {
*status = s;
}
#ifndef NDEBUG
IGNORE_STATUS_IF_ERROR(s);
#endif
return false;
}
readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2);
} else {
return false;
}
}
UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/);
uint64_t offset_in_buffer = offset - bufs_[curr_].offset_;
*result = Slice(bufs_[curr_].buffer_.BufferStart() + offset_in_buffer, n);
return true;
}
// TODO akanksha: Merge this function with TryReadFromCache once async
// functionality is stable.
bool FilePrefetchBuffer::TryReadFromCacheAsync(
const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset,
size_t n, Slice* result, Status* status,
Env::IOPriority rate_limiter_priority) {
assert(async_io_);
if (track_min_offset_ && offset < min_offset_read_) {
min_offset_read_ = static_cast<size_t>(offset);
}
if (!enable_) {
return false;
}
// In case of async_io_, offset can be less than bufs_[curr_].offset_ because
// of reads not sequential and PrefetchAsync can be called for any block and
// RocksDB will call TryReadFromCacheAsync after PrefetchAsync to Poll for
// requested bytes.
if (bufs_[curr_].buffer_.CurrentSize() > 0 && offset < bufs_[curr_].offset_ &&
prev_len_ != 0) {
return false;
}
bool prefetched = false;
bool copy_to_third_buffer = false;
// If the buffer contains only a few of the requested bytes:
// If readahead is enabled: prefetch the remaining bytes + readahead bytes
// and satisfy the request.
// If readahead is not enabled: return false.
TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache",
&readahead_size_);
if (offset < bufs_[curr_].offset_ ||
offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
if (readahead_size_ > 0) {
Status s;
assert(reader != nullptr);
assert(max_readahead_size_ >= readahead_size_);
if (implicit_auto_readahead_) {
if (!IsEligibleForPrefetch(offset, n)) {
// Ignore status as Prefetch is not called.
s.PermitUncheckedError();
return false;
}
}
// Prefetch n + readahead_size_/2 synchronously as remaining
// readahead_size_/2 will be prefetched asynchronously.
s = PrefetchAsyncInternal(opts, reader, offset, n, readahead_size_ / 2,
rate_limiter_priority, copy_to_third_buffer);
if (!s.ok()) {
if (status) {
*status = s;
}
#ifndef NDEBUG
IGNORE_STATUS_IF_ERROR(s);
#endif
return false;
}
prefetched = true;
} else {
return false;
}
}
UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/);
uint32_t index = curr_;
if (copy_to_third_buffer) {
index = 2;
}
uint64_t offset_in_buffer = offset - bufs_[index].offset_;
*result = Slice(bufs_[index].buffer_.BufferStart() + offset_in_buffer, n);
if (prefetched) {
readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2);
}
return true;
}
void FilePrefetchBuffer::PrefetchAsyncCallback(const FSReadRequest& req,
void* /*cb_arg*/) {
uint32_t index = curr_ ^ 1;
#ifndef NDEBUG
if (req.result.size() < req.len) {
// Fake an IO error to force db_stress fault injection to ignore
// truncated read errors
IGNORE_STATUS_IF_ERROR(Status::IOError());
}
IGNORE_STATUS_IF_ERROR(req.status);
#endif
if (req.status.ok()) {
if (req.offset + req.result.size() <=
bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) {
// All requested bytes are already in the buffer. So no need to update.
return;
}
if (req.offset < bufs_[index].offset_) {
// Next block to be read has changed (Recent read was not a sequential
// read). So ignore this read.
return;
}
size_t current_size = bufs_[index].buffer_.CurrentSize();
bufs_[index].buffer_.Size(current_size + req.result.size());
}
}
Status FilePrefetchBuffer::PrefetchAsync(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t n,
Env::IOPriority rate_limiter_priority,
Slice* result) {
assert(reader != nullptr);
if (!enable_) {
return Status::NotSupported();
}
TEST_SYNC_POINT("FilePrefetchBuffer::PrefetchAsync:Start");
PollAndUpdateBuffersIfNeeded(offset);
// Index of second buffer.
uint32_t second = curr_ ^ 1;
// Since PrefetchAsync can be called on non sequential reads. So offset can
// be less than buffers' offset. In that case it clears the buffer and
// prefetch that block.
if (bufs_[curr_].buffer_.CurrentSize() > 0 && offset < bufs_[curr_].offset_) {
bufs_[curr_].buffer_.Clear();
}
// All requested bytes are already in the curr_ buffer. So no need to Read
// again.
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
offset + n <= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
uint64_t offset_in_buffer = offset - bufs_[curr_].offset_;
*result = Slice(bufs_[curr_].buffer_.BufferStart() + offset_in_buffer, n);
return Status::OK();
}
Status s;
size_t alignment = reader->file()->GetRequiredBufferAlignment();
// TODO akanksha: Handle the scenario if data is overlapping in 2 buffers.
// Currently, tt covers 2 scenarios. Either one buffer (curr_) has no data or
// it has partial data. It ignores the contents in second buffer (overlapping
// data in 2 buffers) and send the request to re-read that data again.
// Clear the second buffer in order to do asynchronous prefetching.
bufs_[second].buffer_.Clear();
size_t offset_to_read = static_cast<size_t>(offset);
uint64_t rounddown_start = 0;
uint64_t roundup_end = 0;
if (bufs_[curr_].buffer_.CurrentSize() == 0) {
// Prefetch full data.
rounddown_start = Rounddown(offset_to_read, alignment);
roundup_end = Roundup(offset_to_read + n, alignment);
} else {
// Prefetch remaining data.
size_t rem_length = n - (bufs_[curr_].buffer_.CurrentSize() -
(offset - bufs_[curr_].offset_));
rounddown_start = bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize();
roundup_end = Roundup(rounddown_start + rem_length, alignment);
}
uint64_t roundup_len = roundup_end - rounddown_start;
assert(roundup_len >= alignment);
assert(roundup_len % alignment == 0);
uint64_t chunk_len = 0;
CalculateOffsetAndLen(alignment, rounddown_start, roundup_len, second, false,
chunk_len);
// Update the buffer offset.
bufs_[second].offset_ = rounddown_start;
assert(roundup_len >= chunk_len);
size_t read_len = static_cast<size_t>(roundup_len - chunk_len);
s = ReadAsync(opts, reader, rate_limiter_priority, read_len, chunk_len,
rounddown_start, second);
if (!s.ok()) {
return s;
}
// Update read pattern so that TryReadFromCacheAsync call be called to Poll
// the data. It will return without polling if blocks are not sequential.
UpdateReadPattern(offset, n, /*decrease_readaheadsize=*/false);
prev_len_ = 0;
return Status::TryAgain();
}
} // namespace ROCKSDB_NAMESPACE