-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsymbolic_d1transfer_entropy.m
176 lines (113 loc) · 2.85 KB
/
symbolic_d1transfer_entropy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function dif=symbolic_d1transfer_entropy(x,y)
%This m - file computes the 1d symbolic tranfer entropy between tw symbolic
%time series
%Reference:
%Staniek & Lehnertz,"Symbolic trasnfer entropy", PHYSICAL REVIEW LETTERS,
%2008
%INPUT : symbolix time series x,y
%OUTPUT: dif = tentxy - tentyx
%DIMITRIADIS STAVROS 10/2012
%Dominik Storhas 7/2013 (correction of pxy estimation - line 149)
%Technical University Munich (Germany) and
%Macquarie University Sydney (Australia)
s=1;
uni=unique([x,y]);
nosym=length(uni);
for k=1:length(x)
r=find(x(k)==uni);
x(k)=r;
r=find(y(k)==uni);
y(k)=r;
end
%ESTIMATE TRANSFER ENTROPY Y -> X
%estimate pxxy
pxxy=zeros(nosym,nosym,nosym);
for k=1:length(x)-s
pxxy(x(k+s),x(k),y(k))=pxxy(x(k+s),x(k),y(k))+1;
end
sum1=sum(sum(sum(pxxy)));
pxxy=pxxy/sum1;
%estimate pxx
pxx=zeros(nosym,nosym);
for k=1:length(x)-s
pxx(x(k+s),x(k))=pxx(x(k+s),x(k))+1;
end
sum1=sum(sum(pxx));
pxx=pxx/sum1;
%estimate pxy
pxy=zeros(nosym,nosym);
for k=1:length(x)
pxy(x(k),y(k))=pxy(x(k),y(k))+1;
end
sum1=sum(sum(pxy));
pxy=pxy/sum1;
%estimate px
px=zeros(1,nosym);
for k=1:length(x)
px(x(k))=px(x(k))+1;
end
sum1=sum(px);
px=px/sum1;
%TRANSFER ENTROPY Y -> X
tentyx=0;
count=0;
for k=1:nosym
for l=1:nosym
for m=1:nosym
count=count + 1;
num=pxxy(k,l,m)*px(l);
dem=pxy(l,m)*pxx(k,l);
tentyx(count)=pxxy(k,l,m)*log2(num/dem);
end
end
end
%eliminate NaNs
tentyx=sum(tentyx(find(isnan(tentyx)==0)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%ESTIMATE TRANSFER ENTROPY X -> Y
%estimate pyyx
pyyx=zeros(nosym,nosym,nosym);
for k=1:length(y)-s
pyyx(y(k+s),y(k),x(k))=pyyx(y(k+s),y(k),x(k))+1;
end
sum1=sum(sum(sum(pyyx)));
pyyx=pyyx/sum1;
%estimate pyy
pyy=zeros(nosym,nosym);
for k=1:length(y)-s
pyy(y(k+s),y(k))=pyy(y(k+s),y(k))+1;
end
sum1=sum(sum(pyy));
pyy=pyy/sum1;
%estimate py
py=zeros(1,nosym);
for k=1:length(y)
py(y(k))=py(y(k))+1;
end
sum1=sum(py);
py=py/sum1;
%TRANSFER ENTROPY X -> Y
tentxy=0;
count=0;
for k=1:nosym
for l=1:nosym
for m=1:nosym
count=count + 1;
num=pyyx(k,l,m)*py(l);
dem=pxy(m,l)*pyy(k,l);
tentxy(count)=pyyx(k,l,m)*log2(num/dem);
end
end
end
%eliminate NaNs
tentxy=sum(tentxy(find(isnan(tentxy)==0)));
dif=tentxy - tentyx;
if dif > 0 & dif ~=Inf
disp('system x drives y');
elseif dif < 0
disp('system y drives x');
elseif dif==0
disp('symmetric bidirectionality');
elseif dif==Inf
disp('no information can be extracted by the two symbolic time series');
end