forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdenoiser.hpp
1015 lines (850 loc) · 38.6 KB
/
denoiser.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __DENOISER_HPP__
#define __DENOISER_HPP__
#include "ggml_extend.hpp"
#include "gits_noise.inl"
/*================================================= CompVisDenoiser ==================================================*/
// Ref: https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/external.py
#define TIMESTEPS 1000
#define FLUX_TIMESTEPS 1000
struct SigmaSchedule {
int version = 0;
typedef std::function<float(float)> t_to_sigma_t;
virtual std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) = 0;
};
struct DiscreteSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) {
std::vector<float> result;
int t_max = TIMESTEPS - 1;
if (n == 0) {
return result;
} else if (n == 1) {
result.push_back(t_to_sigma((float)t_max));
result.push_back(0);
return result;
}
float step = static_cast<float>(t_max) / static_cast<float>(n - 1);
for (uint32_t i = 0; i < n; ++i) {
float t = t_max - step * i;
result.push_back(t_to_sigma(t));
}
result.push_back(0);
return result;
}
};
struct ExponentialSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) {
std::vector<float> sigmas;
// Calculate step size
float log_sigma_min = std::log(sigma_min);
float log_sigma_max = std::log(sigma_max);
float step = (log_sigma_max - log_sigma_min) / (n - 1);
// Fill sigmas with exponential values
for (uint32_t i = 0; i < n; ++i) {
float sigma = std::exp(log_sigma_max - step * i);
sigmas.push_back(sigma);
}
sigmas.push_back(0.0f);
return sigmas;
}
};
/* interp and linear_interp adapted from dpilger26's NumCpp library:
* https://github.com/dpilger26/NumCpp/tree/5e40aab74d14e257d65d3dc385c9ff9e2120c60e */
constexpr double interp(double left, double right, double perc) noexcept {
return (left * (1. - perc)) + (right * perc);
}
/* This will make the assumption that the reference x and y values are
* already sorted in ascending order because they are being generated as
* such in the calling function */
std::vector<double> linear_interp(std::vector<float> new_x,
const std::vector<float> ref_x,
const std::vector<float> ref_y) {
const size_t len_x = new_x.size();
size_t i = 0;
size_t j = 0;
std::vector<double> new_y(len_x);
if (ref_x.size() != ref_y.size()) {
LOG_ERROR("Linear Interpolation Failed: length mismatch");
return new_y;
}
/* Adjusted bounds checking to ensure new_x is within ref_x range */
if (new_x[0] < ref_x[0]) {
new_x[0] = ref_x[0];
}
if (new_x.back() > ref_x.back()) {
new_x.back() = ref_x.back();
}
while (i < len_x) {
if ((ref_x[j] > new_x[i]) || (new_x[i] > ref_x[j + 1])) {
j++;
continue;
}
const double perc = static_cast<double>(new_x[i] - ref_x[j]) / static_cast<double>(ref_x[j + 1] - ref_x[j]);
new_y[i] = interp(ref_y[j], ref_y[j + 1], perc);
i++;
}
return new_y;
}
std::vector<float> linear_space(const float start, const float end, const size_t num_points) {
std::vector<float> result(num_points);
const float inc = (end - start) / (static_cast<float>(num_points - 1));
if (num_points > 0) {
result[0] = start;
for (size_t i = 1; i < num_points; i++) {
result[i] = result[i - 1] + inc;
}
}
return result;
}
std::vector<float> log_linear_interpolation(std::vector<float> sigma_in,
const size_t new_len) {
const size_t s_len = sigma_in.size();
std::vector<float> x_vals = linear_space(0.f, 1.f, s_len);
std::vector<float> y_vals(s_len);
/* Reverses the input array to be ascending instead of descending,
* also hits it with a log, it is log-linear interpolation after all */
for (size_t i = 0; i < s_len; i++) {
y_vals[i] = std::log(sigma_in[s_len - i - 1]);
}
std::vector<float> new_x_vals = linear_space(0.f, 1.f, new_len);
std::vector<double> new_y_vals = linear_interp(new_x_vals, x_vals, y_vals);
std::vector<float> results(new_len);
for (size_t i = 0; i < new_len; i++) {
results[i] = static_cast<float>(std::exp(new_y_vals[new_len - i - 1]));
}
return results;
}
/*
https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
*/
struct AYSSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) {
const std::vector<float> noise_levels[] = {
/* SD1.5 */
{14.6146412293f, 6.4745760956f, 3.8636745985f, 2.6946151520f,
1.8841921177f, 1.3943805092f, 0.9642583904f, 0.6523686016f,
0.3977456272f, 0.1515232662f, 0.0291671582f},
/* SDXL */
{14.6146412293f, 6.3184485287f, 3.7681790315f, 2.1811480769f,
1.3405244945f, 0.8620721141f, 0.5550693289f, 0.3798540708f,
0.2332364134f, 0.1114188177f, 0.0291671582f},
/* SVD */
{700.00f, 54.5f, 15.886f, 7.977f, 4.248f, 1.789f, 0.981f, 0.403f,
0.173f, 0.034f, 0.002f},
};
std::vector<float> inputs;
std::vector<float> results(n + 1);
switch (version) {
case VERSION_SD2: /* fallthrough */
LOG_WARN("AYS not designed for SD2.X models");
case VERSION_SD1:
LOG_INFO("AYS using SD1.5 noise levels");
inputs = noise_levels[0];
break;
case VERSION_SDXL:
LOG_INFO("AYS using SDXL noise levels");
inputs = noise_levels[1];
break;
case VERSION_SVD:
LOG_INFO("AYS using SVD noise levels");
inputs = noise_levels[2];
break;
default:
LOG_ERROR("Version not compatable with AYS scheduler");
return results;
}
/* Stretches those pre-calculated reference levels out to the desired
* size using log-linear interpolation */
if ((n + 1) != inputs.size()) {
results = log_linear_interpolation(inputs, n + 1);
} else {
results = inputs;
}
/* Not sure if this is strictly neccessary */
results[n] = 0.0f;
return results;
}
};
/*
* GITS Scheduler: https://github.com/zju-pi/diff-sampler/tree/main/gits-main
*/
struct GITSSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) {
if (sigma_max <= 0.0f) {
return std::vector<float>{};
}
std::vector<float> sigmas;
// Assume coeff is provided (replace 1.20 with your dynamic coeff)
float coeff = 1.20f; // Default coefficient
// Normalize coeff to the closest value in the array (0.80 to 1.50)
coeff = std::round(coeff * 20.0f) / 20.0f; // Round to the nearest 0.05
// Calculate the index based on the coefficient
int index = static_cast<int>((coeff - 0.80f) / 0.05f);
// Ensure the index is within bounds
index = std::max(0, std::min(index, static_cast<int>(GITS_NOISE.size() - 1)));
const std::vector<std::vector<float>>& selected_noise = *GITS_NOISE[index];
if (n <= 20) {
sigmas = (selected_noise)[n - 2];
} else {
sigmas = log_linear_interpolation(selected_noise.back(), n + 1);
}
sigmas[n] = 0.0f;
return sigmas;
}
};
struct KarrasSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) {
// These *COULD* be function arguments here,
// but does anybody ever bother to touch them?
float rho = 7.f;
std::vector<float> result(n + 1);
float min_inv_rho = pow(sigma_min, (1.f / rho));
float max_inv_rho = pow(sigma_max, (1.f / rho));
for (uint32_t i = 0; i < n; i++) {
// Eq. (5) from Karras et al 2022
result[i] = pow(max_inv_rho + (float)i / ((float)n - 1.f) * (min_inv_rho - max_inv_rho), rho);
}
result[n] = 0.;
return result;
}
};
struct Denoiser {
std::shared_ptr<SigmaSchedule> schedule = std::make_shared<DiscreteSchedule>();
virtual float sigma_min() = 0;
virtual float sigma_max() = 0;
virtual float sigma_to_t(float sigma) = 0;
virtual float t_to_sigma(float t) = 0;
virtual std::vector<float> get_scalings(float sigma) = 0;
virtual ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) = 0;
virtual ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) = 0;
virtual std::vector<float> get_sigmas(uint32_t n) {
auto bound_t_to_sigma = std::bind(&Denoiser::t_to_sigma, this, std::placeholders::_1);
return schedule->get_sigmas(n, sigma_min(), sigma_max(), bound_t_to_sigma);
}
};
struct CompVisDenoiser : public Denoiser {
float sigmas[TIMESTEPS];
float log_sigmas[TIMESTEPS];
float sigma_data = 1.0f;
float sigma_min() {
return sigmas[0];
}
float sigma_max() {
return sigmas[TIMESTEPS - 1];
}
float sigma_to_t(float sigma) {
float log_sigma = std::log(sigma);
std::vector<float> dists;
dists.reserve(TIMESTEPS);
for (float log_sigma_val : log_sigmas) {
dists.push_back(log_sigma - log_sigma_val);
}
int low_idx = 0;
for (size_t i = 0; i < TIMESTEPS; i++) {
if (dists[i] >= 0) {
low_idx++;
}
}
low_idx = std::min(std::max(low_idx - 1, 0), TIMESTEPS - 2);
int high_idx = low_idx + 1;
float low = log_sigmas[low_idx];
float high = log_sigmas[high_idx];
float w = (low - log_sigma) / (low - high);
w = std::max(0.f, std::min(1.f, w));
float t = (1.0f - w) * low_idx + w * high_idx;
return t;
}
float t_to_sigma(float t) {
int low_idx = static_cast<int>(std::floor(t));
int high_idx = static_cast<int>(std::ceil(t));
float w = t - static_cast<float>(low_idx);
float log_sigma = (1.0f - w) * log_sigmas[low_idx] + w * log_sigmas[high_idx];
return std::exp(log_sigma);
}
std::vector<float> get_scalings(float sigma) {
float c_skip = 1.0f;
float c_out = -sigma;
float c_in = 1.0f / std::sqrt(sigma * sigma + sigma_data * sigma_data);
return {c_skip, c_out, c_in};
}
// this function will modify noise/latent
ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) {
ggml_tensor_scale(noise, sigma);
ggml_tensor_add(latent, noise);
return latent;
}
ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) {
return latent;
}
};
struct CompVisVDenoiser : public CompVisDenoiser {
std::vector<float> get_scalings(float sigma) {
float c_skip = sigma_data * sigma_data / (sigma * sigma + sigma_data * sigma_data);
float c_out = -sigma * sigma_data / std::sqrt(sigma * sigma + sigma_data * sigma_data);
float c_in = 1.0f / std::sqrt(sigma * sigma + sigma_data * sigma_data);
return {c_skip, c_out, c_in};
}
};
float time_snr_shift(float alpha, float t) {
if (alpha == 1.0f) {
return t;
}
return alpha * t / (1 + (alpha - 1) * t);
}
struct DiscreteFlowDenoiser : public Denoiser {
float sigmas[TIMESTEPS];
float shift = 3.0f;
float sigma_data = 1.0f;
DiscreteFlowDenoiser() {
set_parameters();
}
void set_parameters() {
for (int i = 1; i < TIMESTEPS + 1; i++) {
sigmas[i - 1] = t_to_sigma(i);
}
}
float sigma_min() {
return sigmas[0];
}
float sigma_max() {
return sigmas[TIMESTEPS - 1];
}
float sigma_to_t(float sigma) {
return sigma * 1000.f;
}
float t_to_sigma(float t) {
t = t + 1;
return time_snr_shift(shift, t / 1000.f);
}
std::vector<float> get_scalings(float sigma) {
float c_skip = 1.0f;
float c_out = -sigma;
float c_in = 1.0f;
return {c_skip, c_out, c_in};
}
// this function will modify noise/latent
ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) {
ggml_tensor_scale(noise, sigma);
ggml_tensor_scale(latent, 1.0f - sigma);
ggml_tensor_add(latent, noise);
return latent;
}
ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) {
ggml_tensor_scale(latent, 1.0f / (1.0f - sigma));
return latent;
}
};
float flux_time_shift(float mu, float sigma, float t) {
return std::exp(mu) / (std::exp(mu) + std::pow((1.0 / t - 1.0), sigma));
}
struct FluxFlowDenoiser : public Denoiser {
float sigmas[TIMESTEPS];
float shift = 1.15f;
float sigma_data = 1.0f;
FluxFlowDenoiser(float shift = 1.15f) {
set_parameters(shift);
}
void set_parameters(float shift = 1.15f) {
this->shift = shift;
for (int i = 1; i < TIMESTEPS + 1; i++) {
sigmas[i - 1] = t_to_sigma(i / TIMESTEPS * TIMESTEPS);
}
}
float sigma_min() {
return sigmas[0];
}
float sigma_max() {
return sigmas[TIMESTEPS - 1];
}
float sigma_to_t(float sigma) {
return sigma;
}
float t_to_sigma(float t) {
t = t + 1;
return flux_time_shift(shift, 1.0f, t / TIMESTEPS);
}
std::vector<float> get_scalings(float sigma) {
float c_skip = 1.0f;
float c_out = -sigma;
float c_in = 1.0f;
return {c_skip, c_out, c_in};
}
// this function will modify noise/latent
ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) {
ggml_tensor_scale(noise, sigma);
ggml_tensor_scale(latent, 1.0f - sigma);
ggml_tensor_add(latent, noise);
return latent;
}
ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) {
ggml_tensor_scale(latent, 1.0f / (1.0f - sigma));
return latent;
}
};
typedef std::function<ggml_tensor*(ggml_tensor*, float, int)> denoise_cb_t;
// k diffusion reverse ODE: dx = (x - D(x;\sigma)) / \sigma dt; \sigma(t) = t
static void sample_k_diffusion(sample_method_t method,
denoise_cb_t model,
ggml_context* work_ctx,
ggml_tensor* x,
std::vector<float> sigmas,
std::shared_ptr<RNG> rng) {
size_t steps = sigmas.size() - 1;
// sample_euler_ancestral
switch (method) {
case EULER_A: {
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
float sigma = sigmas[i];
// denoise
ggml_tensor* denoised = model(x, sigma, i + 1);
// d = (x - denoised) / sigma
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int i = 0; i < ggml_nelements(d); i++) {
vec_d[i] = (vec_x[i] - vec_denoised[i]) / sigma;
}
}
// get_ancestral_step
float sigma_up = std::min(sigmas[i + 1],
std::sqrt(sigmas[i + 1] * sigmas[i + 1] * (sigmas[i] * sigmas[i] - sigmas[i + 1] * sigmas[i + 1]) / (sigmas[i] * sigmas[i])));
float sigma_down = std::sqrt(sigmas[i + 1] * sigmas[i + 1] - sigma_up * sigma_up);
// Euler method
float dt = sigma_down - sigmas[i];
// x = x + d * dt
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
for (int i = 0; i < ggml_nelements(x); i++) {
vec_x[i] = vec_x[i] + vec_d[i] * dt;
}
}
if (sigmas[i + 1] > 0) {
// x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
ggml_tensor_set_f32_randn(noise, rng);
// noise = load_tensor_from_file(work_ctx, "./rand" + std::to_string(i+1) + ".bin");
{
float* vec_x = (float*)x->data;
float* vec_noise = (float*)noise->data;
for (int i = 0; i < ggml_nelements(x); i++) {
vec_x[i] = vec_x[i] + vec_noise[i] * sigma_up;
}
}
}
}
} break;
case EULER: // Implemented without any sigma churn
{
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
float sigma = sigmas[i];
// denoise
ggml_tensor* denoised = model(x, sigma, i + 1);
// d = (x - denoised) / sigma
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(d); j++) {
vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigma;
}
}
float dt = sigmas[i + 1] - sigma;
// x = x + d * dt
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = vec_x[j] + vec_d[j] * dt;
}
}
}
} break;
case HEUN: {
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
// denoise
ggml_tensor* denoised = model(x, sigmas[i], -(i + 1));
// d = (x - denoised) / sigma
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i];
}
}
float dt = sigmas[i + 1] - sigmas[i];
if (sigmas[i + 1] == 0) {
// Euler step
// x = x + d * dt
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = vec_x[j] + vec_d[j] * dt;
}
} else {
// Heun step
float* vec_d = (float*)d->data;
float* vec_d2 = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_x2 = (float*)x2->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x2[j] = vec_x[j] + vec_d[j] * dt;
}
ggml_tensor* denoised = model(x2, sigmas[i + 1], i + 1);
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(x); j++) {
float d2 = (vec_x2[j] - vec_denoised[j]) / sigmas[i + 1];
vec_d[j] = (vec_d[j] + d2) / 2;
vec_x[j] = vec_x[j] + vec_d[j] * dt;
}
}
}
} break;
case DPM2: {
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
// denoise
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
// d = (x - denoised) / sigma
{
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i];
}
}
if (sigmas[i + 1] == 0) {
// Euler step
// x = x + d * dt
float dt = sigmas[i + 1] - sigmas[i];
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = vec_x[j] + vec_d[j] * dt;
}
} else {
// DPM-Solver-2
float sigma_mid = exp(0.5f * (log(sigmas[i]) + log(sigmas[i + 1])));
float dt_1 = sigma_mid - sigmas[i];
float dt_2 = sigmas[i + 1] - sigmas[i];
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_x2 = (float*)x2->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x2[j] = vec_x[j] + vec_d[j] * dt_1;
}
ggml_tensor* denoised = model(x2, sigma_mid, i + 1);
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(x); j++) {
float d2 = (vec_x2[j] - vec_denoised[j]) / sigma_mid;
vec_x[j] = vec_x[j] + d2 * dt_2;
}
}
}
} break;
case DPMPP2S_A: {
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
// denoise
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
// get_ancestral_step
float sigma_up = std::min(sigmas[i + 1],
std::sqrt(sigmas[i + 1] * sigmas[i + 1] * (sigmas[i] * sigmas[i] - sigmas[i + 1] * sigmas[i + 1]) / (sigmas[i] * sigmas[i])));
float sigma_down = std::sqrt(sigmas[i + 1] * sigmas[i + 1] - sigma_up * sigma_up);
auto t_fn = [](float sigma) -> float { return -log(sigma); };
auto sigma_fn = [](float t) -> float { return exp(-t); };
if (sigma_down == 0) {
// Euler step
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(d); j++) {
vec_d[j] = (vec_x[j] - vec_denoised[j]) / sigmas[i];
}
// TODO: If sigma_down == 0, isn't this wrong?
// But
// https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L525
// has this exactly the same way.
float dt = sigma_down - sigmas[i];
for (int j = 0; j < ggml_nelements(d); j++) {
vec_x[j] = vec_x[j] + vec_d[j] * dt;
}
} else {
// DPM-Solver++(2S)
float t = t_fn(sigmas[i]);
float t_next = t_fn(sigma_down);
float h = t_next - t;
float s = t + 0.5f * h;
float* vec_d = (float*)d->data;
float* vec_x = (float*)x->data;
float* vec_x2 = (float*)x2->data;
float* vec_denoised = (float*)denoised->data;
// First half-step
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x2[j] = (sigma_fn(s) / sigma_fn(t)) * vec_x[j] - (exp(-h * 0.5f) - 1) * vec_denoised[j];
}
ggml_tensor* denoised = model(x2, sigmas[i + 1], i + 1);
// Second half-step
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = (sigma_fn(t_next) / sigma_fn(t)) * vec_x[j] - (exp(-h) - 1) * vec_denoised[j];
}
}
// Noise addition
if (sigmas[i + 1] > 0) {
ggml_tensor_set_f32_randn(noise, rng);
{
float* vec_x = (float*)x->data;
float* vec_noise = (float*)noise->data;
for (int i = 0; i < ggml_nelements(x); i++) {
vec_x[i] = vec_x[i] + vec_noise[i] * sigma_up;
}
}
}
}
} break;
case DPMPP2M: // DPM++ (2M) from Karras et al (2022)
{
struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x);
auto t_fn = [](float sigma) -> float { return -log(sigma); };
for (int i = 0; i < steps; i++) {
// denoise
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
float t = t_fn(sigmas[i]);
float t_next = t_fn(sigmas[i + 1]);
float h = t_next - t;
float a = sigmas[i + 1] / sigmas[i];
float b = exp(-h) - 1.f;
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
float* vec_old_denoised = (float*)old_denoised->data;
if (i == 0 || sigmas[i + 1] == 0) {
// Simpler step for the edge cases
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = a * vec_x[j] - b * vec_denoised[j];
}
} else {
float h_last = t - t_fn(sigmas[i - 1]);
float r = h_last / h;
for (int j = 0; j < ggml_nelements(x); j++) {
float denoised_d = (1.f + 1.f / (2.f * r)) * vec_denoised[j] - (1.f / (2.f * r)) * vec_old_denoised[j];
vec_x[j] = a * vec_x[j] - b * denoised_d;
}
}
// old_denoised = denoised
for (int j = 0; j < ggml_nelements(x); j++) {
vec_old_denoised[j] = vec_denoised[j];
}
}
} break;
case DPMPP2Mv2: // Modified DPM++ (2M) from https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457
{
struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x);
auto t_fn = [](float sigma) -> float { return -log(sigma); };
for (int i = 0; i < steps; i++) {
// denoise
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
float t = t_fn(sigmas[i]);
float t_next = t_fn(sigmas[i + 1]);
float h = t_next - t;
float a = sigmas[i + 1] / sigmas[i];
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
float* vec_old_denoised = (float*)old_denoised->data;
if (i == 0 || sigmas[i + 1] == 0) {
// Simpler step for the edge cases
float b = exp(-h) - 1.f;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = a * vec_x[j] - b * vec_denoised[j];
}
} else {
float h_last = t - t_fn(sigmas[i - 1]);
float h_min = std::min(h_last, h);
float h_max = std::max(h_last, h);
float r = h_max / h_min;
float h_d = (h_max + h_min) / 2.f;
float b = exp(-h_d) - 1.f;
for (int j = 0; j < ggml_nelements(x); j++) {
float denoised_d = (1.f + 1.f / (2.f * r)) * vec_denoised[j] - (1.f / (2.f * r)) * vec_old_denoised[j];
vec_x[j] = a * vec_x[j] - b * denoised_d;
}
}
// old_denoised = denoised
for (int j = 0; j < ggml_nelements(x); j++) {
vec_old_denoised[j] = vec_denoised[j];
}
}
} break;
case IPNDM: // iPNDM sampler from https://github.com/zju-pi/diff-sampler/tree/main/diff-solvers-main
{
int max_order = 4;
ggml_tensor* x_next = x;
std::vector<ggml_tensor*> buffer_model;
for (int i = 0; i < steps; i++) {
float sigma = sigmas[i];
float sigma_next = sigmas[i + 1];
ggml_tensor* x_cur = x_next;
float* vec_x_cur = (float*)x_cur->data;
float* vec_x_next = (float*)x_next->data;
// Denoising step
ggml_tensor* denoised = model(x_cur, sigma, i + 1);
float* vec_denoised = (float*)denoised->data;
// d_cur = (x_cur - denoised) / sigma
struct ggml_tensor* d_cur = ggml_dup_tensor(work_ctx, x_cur);
float* vec_d_cur = (float*)d_cur->data;
for (int j = 0; j < ggml_nelements(d_cur); j++) {
vec_d_cur[j] = (vec_x_cur[j] - vec_denoised[j]) / sigma;
}
int order = std::min(max_order, i + 1);
// Calculate vec_x_next based on the order
switch (order) {
case 1: // First Euler step
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * vec_d_cur[j];
}
break;
case 2: // Use one history point
{
float* vec_d_prev1 = (float*)buffer_model.back()->data;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (3 * vec_d_cur[j] - vec_d_prev1[j]) / 2;
}
} break;
case 3: // Use two history points
{
float* vec_d_prev1 = (float*)buffer_model.back()->data;
float* vec_d_prev2 = (float*)buffer_model[buffer_model.size() - 2]->data;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (23 * vec_d_cur[j] - 16 * vec_d_prev1[j] + 5 * vec_d_prev2[j]) / 12;
}
} break;
case 4: // Use three history points
{
float* vec_d_prev1 = (float*)buffer_model.back()->data;
float* vec_d_prev2 = (float*)buffer_model[buffer_model.size() - 2]->data;
float* vec_d_prev3 = (float*)buffer_model[buffer_model.size() - 3]->data;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (55 * vec_d_cur[j] - 59 * vec_d_prev1[j] + 37 * vec_d_prev2[j] - 9 * vec_d_prev3[j]) / 24;
}
} break;
}
// Manage buffer_model
if (buffer_model.size() == max_order - 1) {
// Shift elements to the left
for (int k = 0; k < max_order - 2; k++) {
buffer_model[k] = buffer_model[k + 1];
}
buffer_model.back() = d_cur; // Replace the last element with d_cur
} else {
buffer_model.push_back(d_cur);
}
}
} break;
case IPNDM_V: // iPNDM_v sampler from https://github.com/zju-pi/diff-sampler/tree/main/diff-solvers-main
{
int max_order = 4;
std::vector<ggml_tensor*> buffer_model;
ggml_tensor* x_next = x;
for (int i = 0; i < steps; i++) {
float sigma = sigmas[i];
float t_next = sigmas[i + 1];
// Denoising step
ggml_tensor* denoised = model(x, sigma, i + 1);
float* vec_denoised = (float*)denoised->data;
struct ggml_tensor* d_cur = ggml_dup_tensor(work_ctx, x);
float* vec_d_cur = (float*)d_cur->data;
float* vec_x = (float*)x->data;
// d_cur = (x - denoised) / sigma
for (int j = 0; j < ggml_nelements(d_cur); j++) {
vec_d_cur[j] = (vec_x[j] - vec_denoised[j]) / sigma;
}
int order = std::min(max_order, i + 1);
float h_n = t_next - sigma;
float h_n_1 = (i > 0) ? (sigma - sigmas[i - 1]) : h_n;
switch (order) {
case 1: // First Euler step
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x[j] += vec_d_cur[j] * h_n;
}
break;
case 2: {
float* vec_d_prev1 = (float*)buffer_model.back()->data;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x[j] += h_n * ((2 + (h_n / h_n_1)) * vec_d_cur[j] - (h_n / h_n_1) * vec_d_prev1[j]) / 2;
}
break;
}
case 3: {
float h_n_2 = (i > 1) ? (sigmas[i - 1] - sigmas[i - 2]) : h_n_1;
float* vec_d_prev1 = (float*)buffer_model.back()->data;
float* vec_d_prev2 = (buffer_model.size() > 1) ? (float*)buffer_model[buffer_model.size() - 2]->data : vec_d_prev1;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x[j] += h_n * ((23 * vec_d_cur[j] - 16 * vec_d_prev1[j] + 5 * vec_d_prev2[j]) / 12);
}
break;
}
case 4: {
float h_n_2 = (i > 1) ? (sigmas[i - 1] - sigmas[i - 2]) : h_n_1;
float h_n_3 = (i > 2) ? (sigmas[i - 2] - sigmas[i - 3]) : h_n_2;
float* vec_d_prev1 = (float*)buffer_model.back()->data;
float* vec_d_prev2 = (buffer_model.size() > 1) ? (float*)buffer_model[buffer_model.size() - 2]->data : vec_d_prev1;
float* vec_d_prev3 = (buffer_model.size() > 2) ? (float*)buffer_model[buffer_model.size() - 3]->data : vec_d_prev2;
for (int j = 0; j < ggml_nelements(x_next); j++) {
vec_x[j] += h_n * ((55 * vec_d_cur[j] - 59 * vec_d_prev1[j] + 37 * vec_d_prev2[j] - 9 * vec_d_prev3[j]) / 24);
}
break;
}
}
// Manage buffer_model
if (buffer_model.size() == max_order - 1) {
buffer_model.erase(buffer_model.begin());
}
buffer_model.push_back(d_cur);
// Prepare the next d tensor
d_cur = ggml_dup_tensor(work_ctx, x_next);
}
} break;
case LCM: // Latent Consistency Models
{
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
struct ggml_tensor* d = ggml_dup_tensor(work_ctx, x);
for (int i = 0; i < steps; i++) {
float sigma = sigmas[i];
// denoise
ggml_tensor* denoised = model(x, sigma, i + 1);
// x = denoised
{
float* vec_x = (float*)x->data;
float* vec_denoised = (float*)denoised->data;
for (int j = 0; j < ggml_nelements(x); j++) {
vec_x[j] = vec_denoised[j];
}
}
if (sigmas[i + 1] > 0) {
// x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
ggml_tensor_set_f32_randn(noise, rng);
// noise = load_tensor_from_file(res_ctx, "./rand" + std::to_string(i+1) + ".bin");
{
float* vec_x = (float*)x->data;
float* vec_noise = (float*)noise->data;