-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlasagne_lib.py
241 lines (188 loc) · 9.7 KB
/
lasagne_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import lasagne
import theano
import theano.tensor as T
import numpy as np
from rrnn_beta import RRNNLayer, TimeGate
from plstm_utils import ExponentialUniformInit
def get_gru_net(input_var, mask_var, inp_dim, rnn_size, out_size, GRAD_CLIP, drop_p):
# Input layer
l_in = lasagne.layers.InputLayer(shape=(None, None, inp_dim), input_var=input_var)
# Masking layer
l_mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
# Allows arbitrary sizes
batch_size, seq_len, _ = input_var.shape
# RNN layers
h1 = lasagne.layers.GRULayer(l_in, num_units=rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP,
hid_init=lasagne.init.GlorotUniform())
h2 = lasagne.layers.DropoutLayer(h1, p=drop_p)
h3 = lasagne.layers.SliceLayer(h2, -1, axis=1)
h4 = lasagne.layers.DenseLayer(h3, num_units=rnn_size)
h5 = lasagne.layers.DropoutLayer(h4, p=drop_p)
h6 = lasagne.layers.DenseLayer(h5, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax)
return h6
def get_rnn_net(input_var, mask_var, inp_dim, rnn_size, out_size, GRAD_CLIP, drop_p):
# Input layer
l_in = lasagne.layers.InputLayer(shape=(None, None, inp_dim), input_var=input_var)
# Masking layer
l_mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
# Allows arbitrary sizes
batch_size, seq_len, _ = input_var.shape
# RNN layers
h1 = lasagne.layers.RecurrentLayer(l_in, num_units=rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP,
hid_init=lasagne.init.GlorotUniform())
h2 = lasagne.layers.DropoutLayer(h1, p=drop_p)
h3 = lasagne.layers.SliceLayer(h2, -1, axis=1)
h4 = lasagne.layers.DenseLayer(h3, num_units=rnn_size)
h5 = lasagne.layers.DropoutLayer(h4, p=drop_p)
h6 = lasagne.layers.DenseLayer(h5, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax)
return h6
def get_rrnn_net(input_var, mask_var, inp_dim, rnn_size, out_size, GRAD_CLIP, drop_p):
# Input layer
l_in = lasagne.layers.InputLayer(shape=(None, None, inp_dim), input_var=input_var)
# Masking layer
l_mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
# Allows arbitrary sizes
batch_size, seq_len, _ = input_var.shape
# RNN layers
# h1 = RRNNLayer(l_in, num_units=rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP)
h1 = RRNNLayer(l_in,time_input=None,
num_units=rnn_size,
mask_input=l_mask,
nonlinearity=lasagne.nonlinearities.rectify)
h2 = lasagne.layers.DropoutLayer(h1, p=drop_p)
h3 = lasagne.layers.SliceLayer(h2, -1, axis=1)
h4 = lasagne.layers.DenseLayer(h3, num_units=rnn_size)
h5 = lasagne.layers.DropoutLayer(h4, p=drop_p)
h6 = lasagne.layers.DenseLayer(h5, num_units=out_size, nonlinearity=lasagne.nonlinearities.softmax)
return h6
def get_train_and_val_fn(input_var, mask_var, target_var, network, lr):
# Get final output of network
prediction = lasagne.layers.get_output(network)
# Calculate the loss with categorical cross entropy
loss = lasagne.objectives.categorical_crossentropy(predictions=prediction, targets=target_var)
loss = loss.mean()
# Acquire all the parameters recursively in the network
params = lasagne.layers.get_all_params(network, trainable=True)
# Use default adam learning
updates = lasagne.updates.adam(loss, params, learning_rate=lr)
# Get a deterministic output for test-time, in case we use dropout
test_prediction = lasagne.layers.get_output(network, deterministic=True)
# Get the loss according to the deterministic test-time output
test_loss = lasagne.objectives.categorical_crossentropy(predictions=prediction, targets=target_var)
test_loss = test_loss.mean()
# Group all the inputs together
fn_inputs = [input_var, mask_var, target_var]
# Compile the training function
train_fn = theano.function(fn_inputs, loss, updates=updates)
# Compile the test function
val_fn = theano.function(fn_inputs, test_loss)
# compile the prediction function
pred_fn = theano.function([input_var, mask_var], test_prediction)
return train_fn, val_fn, pred_fn
def get_train_and_val_fn_ctc(input_var, input_lens, mask_var, output, output_lens, network, lr):
import ctc
# Get final output of network
prediction = lasagne.layers.get_output(network)
# Calculate the loss with CTC
loss = T.mean(ctc.cpu_ctc_th(prediction, input_lens, output, output_lens))
# Acquire all the parameters recursively in the network
params = lasagne.layers.get_all_params(network, trainable=True)
# Use default adam learning
updates = lasagne.updates.adam(loss, params, learning_rate=lr)
# # Remove NaNs from Zero or full 1 probability predictions
# updates = replace_nans_with_zero(updates)
# # Get a deterministic output for test-time, in case we use dropout
test_prediction = lasagne.layers.get_output(network, deterministic=True)
# Get the loss according to the deterministic test-time output
test_loss = T.mean(ctc.cpu_ctc_th(test_prediction, input_lens, output, output_lens))
# Group all the inputs together
fn_inputs = [input_var, input_lens, mask_var, output, output_lens]
# Compile the training function
train_fn = theano.function(fn_inputs, loss, updates=updates)
# Compile the test function
val_fn = theano.function(fn_inputs, test_loss)
# compile the prediction function
pred_fn = theano.function([input_var, mask_var], test_prediction)
return train_fn, val_fn, pred_fn
def non_flattening_dense(l_in, batch_size, seq_len, *args, **kwargs):
# Flatten down the dimensions for everything but the features
l_flat = lasagne.layers.ReshapeLayer(l_in, (-1, [2]))
# Make a dense layer connected to it
l_dense = lasagne.layers.DenseLayer(l_flat, *args, **kwargs)
# Reshape it back out
l_nonflat = lasagne.layers.ReshapeLayer(l_dense, (batch_size, seq_len, l_dense.output_shape[1]))
return l_nonflat
def get_ctc_net(input_var, mask_var, inp_dim, rnn_size, out_size, GRAD_CLIP, drop_p):
# (batch size, max sequence length, number of features)
l_in = lasagne.layers.InputLayer(shape=(None, None, inp_dim), input_var=input_var)
# Mask as matrices of dimensionality (N_BATCH, MAX_LENGTH)
l_mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
# Allows arbitrary sizes
batch_size, seq_len, _ = input_var.shape
# RNN layers
h1 = get_dbl_gru(l_in, rnn_size, l_mask=l_mask, GRAD_CLIP=GRAD_CLIP, drop_p=drop_p)
h2 = non_flattening_dense(h1, batch_size=batch_size, seq_len=seq_len, num_units=rnn_size,
nonlinearity=lasagne.nonlinearities.linear)
h3 = non_flattening_dense(h2, batch_size=batch_size, seq_len=seq_len, num_units=out_size,
nonlinearity=lasagne.nonlinearities.linear)
l_out = lasagne.layers.DimshuffleLayer(h3, (1, 0, 2))
return l_out
def get_dbl_lstm(input_layer, rnn_size, l_mask, GRAD_CLIP, drop_p):
# Forward layer
hf = lasagne.layers.LSTMLayer(input_layer, rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP,
hid_init=lasagne.init.GlorotUniform())
# Backward layer
hb = lasagne.layers.LSTMLayer(input_layer, rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP, backwards=True,
hid_init=lasagne.init.GlorotUniform())
# Concatenation
h = lasagne.layers.ConcatLayer([hf, hb], axis=2)
if drop_p != 'none':
drop = lasagne.layers.DropoutLayer(h, p=drop_p)
print('Dropout value {} used'.format(drop_p))
return drop
elif drop_p == 'none':
print('No dropout used')
return h
else:
print('Dropout definition error')
return 0
def get_dbg_network(input_var, mask_var, inp_dim, rnn_size, out_size, GRAD_CLIP, drop_p):
print('Dropout probability is {}'.format(drop_p))
# (batch size, max sequence length, number of features)
l_in = lasagne.layers.InputLayer(shape=(None, None, inp_dim), input_var=input_var)
# Mask as matrices of dimensionality (N_BATCH, MAX_LENGTH)
l_mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
# Allows arbitrary sizes
batch_size, seq_len, _ = input_var.shape
# RNN layers
h1 = lasagne.layers.LSTMLayer(l_in, rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP,
hid_init=lasagne.init.GlorotUniform())
h2 = non_flattening_dense(h1, batch_size=batch_size, seq_len=seq_len, num_units=out_size,
nonlinearity=lasagne.nonlinearities.linear)
l_out = lasagne.layers.DimshuffleLayer(h2, (1, 0, 2))
return l_out
def replace_nans_with_zero(updates):
# Replace all nans with zeros
for k, v in updates.items():
k = T.switch(T.eq(v, np.nan), float(0.), v)
print('Warning: replaced nans')
return updates
def get_dbl_gru(input_layer, rnn_size, l_mask, GRAD_CLIP, drop_p):
# Forward layer
hf = lasagne.layers.GRULayer(input_layer, rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP,
hid_init=lasagne.init.GlorotUniform())
# Backward layer
hb = lasagne.layers.GRULayer(input_layer, rnn_size, mask_input=l_mask, grad_clipping=GRAD_CLIP, backwards=True,
hid_init=lasagne.init.GlorotUniform())
# Concatenation
h = lasagne.layers.ConcatLayer([hf, hb], axis=2)
if drop_p != 'none':
drop = lasagne.layers.DropoutLayer(h, p=drop_p)
print('Dropout value {} used'.format(drop_p))
return drop
elif drop_p == 'none':
print('No dropout used')
return h
else:
print('Dropout definition error')
return 0