forked from sustainable-computing-io/kepler-model-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextractor_test.py
104 lines (88 loc) · 5.36 KB
/
extractor_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# extractor_test.py
# - extractor.extract
#
# To use response:
# from extractor_test import get_extract_results
# extract_results = get_extract_results(extractor_name, feature_group, node_level)
# import external src
import os
import sys
#################################################################
# import internal src
src_path = os.path.join(os.path.dirname(__file__), '..', 'src')
sys.path.append(src_path)
#################################################################
from train import load_class
from train import DefaultExtractor, SmoothExtractor
from util.extract_types import component_to_col
from util.prom_types import node_info_column
from util.train_types import all_feature_groups
from util import FeatureGroups, FeatureGroup, PowerSourceMap
from util import assure_path, get_valid_feature_group_from_queries
from util import save_csv, load_csv
from prom_test import get_query_results
data_path = os.path.join(os.path.dirname(__file__), 'data')
assure_path(data_path)
extractor_output_path = os.path.join(data_path, 'extractor_output')
assure_path(extractor_output_path)
if not os.path.exists(extractor_output_path):
os.mkdir(extractor_output_path)
test_extractors = [DefaultExtractor(), SmoothExtractor()]
test_energy_source = "rapl-sysfs"
test_energy_components = PowerSourceMap[test_energy_source]
test_num_of_unit = 2
test_customize_extractors = []
def get_filename(extractor_name, feature_group, node_level):
return "{}_{}_{}".format(extractor_name, feature_group, node_level)
def get_extract_result(extractor_name, feature_group, node_level, save_path=extractor_output_path):
filename = get_filename(extractor_name, feature_group, node_level)
return load_csv(save_path, filename)
def get_extract_results(extractor_name, node_level, save_path=extractor_output_path):
all_results = dict()
for feature_group in all_feature_groups:
result = get_extract_result(extractor_name, feature_group, node_level, save_path=save_path)
if result is not None:
all_results[feature_group] = result
return all_results
def save_extract_results(instance, feature_group, extracted_data, node_level, save_path=extractor_output_path):
extractor_name = instance.__class__.__name__
filename = get_filename(extractor_name, feature_group, node_level)
save_csv(save_path, filename, extracted_data)
def get_expected_power_columns(energy_components=test_energy_components, num_of_unit=test_num_of_unit):
# TODO: if ratio applied,
# return [component_to_col(component, "package", unit_val) for component in energy_components for unit_val in range(0,num_of_unit)]
return [component_to_col(component) for component in energy_components]
def assert_extract(extracted_data, power_columns, energy_components, num_of_unit, feature_group):
extracted_data_column_names = extracted_data.columns
# basic assert
assert extracted_data is not None, "extracted data is None"
assert len(power_columns) > 0, "no power label column {}".format(extracted_data_column_names)
assert node_info_column in extracted_data_column_names, "no {} in column {}".format(node_info_column, extracted_data_column_names)
# TODO: if ratio applied, expected_power_column_length = len(energy_components) * num_of_unit
expected_power_column_length = len(energy_components)
# detail assert
assert len(power_columns) == expected_power_column_length, "unexpected power label columns {}, expected {}".format(power_columns, expected_power_column_length)
# TODO: if ratio applied, expected_col_size must + 1 for power_ratio
expected_col_size = expected_power_column_length + len(FeatureGroups[FeatureGroup[feature_group]]) + num_of_unit # power ratio
assert len(extracted_data_column_names) == expected_col_size, "unexpected column length: expected {}, got {}({}) ".format(expected_col_size, extracted_data_column_names, len(extracted_data_column_names))
def process(query_results, feature_group, save_path=extractor_output_path, customize_extractors=test_customize_extractors, energy_source=test_energy_source, num_of_unit=2):
energy_components = PowerSourceMap[energy_source]
global test_extractors
for extractor_name in customize_extractors:
test_extractors += [load_class("extractor", extractor_name)]
for test_instance in test_extractors:
extracted_data, power_columns, corr, _ = test_instance.extract(query_results, energy_components, feature_group, energy_source, node_level=True)
assert_extract(extracted_data, power_columns, energy_components, num_of_unit, feature_group)
save_extract_results(test_instance, feature_group, extracted_data, True, save_path=save_path)
extracted_data, power_columns, corr, _ = test_instance.extract(query_results, energy_components, feature_group, energy_source, node_level=False)
assert_extract(extracted_data, power_columns, energy_components, num_of_unit, feature_group)
save_extract_results(test_instance, feature_group, extracted_data, False, save_path=save_path)
print("Correlations:\n")
print(corr)
if __name__ == '__main__':
query_results = get_query_results()
assert len(query_results) > 0, "cannot read_sample_query_results"
valid_feature_groups = get_valid_feature_group_from_queries(query_results.keys())
for fg in valid_feature_groups:
feature_group = fg.name
process(query_results, feature_group)