forked from facebookresearch/deepmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelUtils.lua
138 lines (126 loc) · 4.54 KB
/
modelUtils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
Utility functions for models
------------------------------------------------------------------------------]]
local utils = {}
--------------------------------------------------------------------------------
-- SpatialConstDiagonal module
-- all BN modules in ResNet to be transformed into SpatialConstDiagonal
if not nn.SpatialConstDiagonal then
local module, parent = torch.class('nn.SpatialConstDiagonal', 'nn.Module')
function module:__init(nOutputPlane, inplace)
parent.__init(self)
self.a = torch.Tensor(1,nOutputPlane,1,1)
self.b = torch.Tensor(1,nOutputPlane,1,1)
self.inplace = inplace
self:reset()
end
function module:reset()
self.a:fill(1); self.b:zero()
end
function module:updateOutput(input)
if self.inplace then
self.output:set(input)
else
self.output:resizeAs(input):copy(input)
end
self.output:cmul(self.a:expandAs(input))
self.output:add(self.b:expandAs(input))
return self.output
end
function module:updateGradInput(input, gradOutput)
if self.inplace then
self.gradInput:set(gradOutput)
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
self.gradInput:cmul(self.a:expandAs(gradOutput))
return self.gradInput
end
end
--------------------------------------------------------------------------------
-- function: replace BN layer to SpatialConstDiagonal
function utils.BNtoFixed(net, ip)
return net:replace(function(x)
if torch.typename(x):find'SpatialBatchNormalization' then
local no = x.running_mean:numel()
local y = nn.SpatialConstDiagonal(no, ip):type(x._type)
if x.running_var then x.running_std = x.running_var:pow(-0.5) end
y.a:copy(x.running_std); y.b:add(-1,x.running_mean):cmul(x.running_std)
if x.affine then y.a:cmul(x.weight); y.b:cmul(x.weight):add(x.bias) end
return y
else
return x
end
end
)
end
--------------------------------------------------------------------------------
-- function: linear2convTrunk
function utils.linear2convTrunk(net,fSz)
return net:replace(function(x)
if torch.typename(x):find('Linear') then
local nInp,nOut = x.weight:size(2)/(fSz*fSz),x.weight:size(1)
local w = torch.reshape(x.weight,nOut,nInp,fSz,fSz)
local y = cudnn.SpatialConvolution(nInp,nOut,fSz,fSz,1,1)
y.weight:copy(w); y.gradWeight:copy(w); y.bias:copy(x.bias)
return y
elseif torch.typename(x):find('Threshold') then
return cudnn.ReLU()
elseif torch.typename(x):find('View') or
torch.typename(x):find('SpatialZeroPadding') then
return nn.Identity()
else
return x
end
end
)
end
--------------------------------------------------------------------------------
-- function: linear2convHeads
function utils.linear2convHead(net)
return net:replace(function(x)
if torch.typename(x):find('Linear') then
local nInp,nOut = x.weight:size(2),x.weight:size(1)
local w = torch.reshape(x.weight,nOut,nInp,1,1)
local y = cudnn.SpatialConvolution(nInp,nOut,1,1,1,1)
y.weight:copy(w); y.gradWeight:copy(w); y.bias:copy(x.bias)
return y
elseif torch.typename(x):find('Threshold') then
return cudnn.ReLU()
elseif not torch.typename(x):find('View') and
not torch.typename(x):find('Copy') then
return x
end
end
)
end
--------------------------------------------------------------------------------
-- function: replace 0-padding of 3x3 conv into mirror-padding
function utils.updatePadding(net, nn_padding)
if torch.typename(net) == "nn.Sequential" or
torch.typename(net) == "nn.ConcatTable" then
for i = #net.modules,1,-1 do
local out = utils.updatePadding(net:get(i), nn_padding)
if out ~= -1 then
local pw, ph = out[1], out[2]
net.modules[i] = nn.Sequential():add(nn_padding(pw,pw,ph,ph))
:add(net.modules[i]):cuda()
end
end
else
if torch.typename(net) == "nn.SpatialConvolution" or
torch.typename(net) == "cudnn.SpatialConvolution" then
if (net.kW == 3 and net.kH == 3) or (net.kW==7 and net.kH==7) then
local pw, ph = net.padW, net.padH
net.padW, net.padH = 0, 0
return {pw,ph}
end
end
end
return -1
end
return utils