forked from rbgirshick/rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrcnn_im_crop.m
92 lines (86 loc) · 3.23 KB
/
rcnn_im_crop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function window = ...
rcnn_im_crop(im, bbox, crop_mode, crop_size, padding, image_mean)
% window = rcnn_im_crop(im, bbox, crop_mode, crop_size, padding, image_mean)
% Crops a window specified by bbox (in [x1 y1 x2 y2] order) out of im.
%
% crop_mode can be either 'warp' or 'square'
% crop_size determines the size of the output window: crop_size x crop_size
% padding is the amount of padding to include at the target scale
% image_mean to subtract from the cropped window
%
% N.B. this should be as identical as possible to the cropping
% implementation in Caffe's WindowDataLayer, which is used while
% fine-tuning.
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
use_square = false;
if strcmp(crop_mode, 'square')
use_square = true;
end
% defaults if padding is 0
pad_w = 0;
pad_h = 0;
crop_width = crop_size;
crop_height = crop_size;
if padding > 0 || use_square
%figure(1); showboxesc(im/256, bbox, 'b', '-');
scale = crop_size/(crop_size - padding*2);
half_height = (bbox(4)-bbox(2)+1)/2;
half_width = (bbox(3)-bbox(1)+1)/2;
center = [bbox(1)+half_width bbox(2)+half_height];
if use_square
% make the box a tight square
if half_height > half_width
half_width = half_height;
else
half_height = half_width;
end
end
bbox = round([center center] + ...
[-half_width -half_height half_width half_height]*scale);
unclipped_height = bbox(4)-bbox(2)+1;
unclipped_width = bbox(3)-bbox(1)+1;
%figure(1); showboxesc([], bbox, 'r', '-');
pad_x1 = max(0, 1 - bbox(1));
pad_y1 = max(0, 1 - bbox(2));
% clipped bbox
bbox(1) = max(1, bbox(1));
bbox(2) = max(1, bbox(2));
bbox(3) = min(size(im,2), bbox(3));
bbox(4) = min(size(im,1), bbox(4));
clipped_height = bbox(4)-bbox(2)+1;
clipped_width = bbox(3)-bbox(1)+1;
scale_x = crop_size/unclipped_width;
scale_y = crop_size/unclipped_height;
crop_width = round(clipped_width*scale_x);
crop_height = round(clipped_height*scale_y);
pad_x1 = round(pad_x1*scale_x);
pad_y1 = round(pad_y1*scale_y);
pad_h = pad_y1;
pad_w = pad_x1;
if pad_y1 + crop_height > crop_size
crop_height = crop_size - pad_y1;
end
if pad_x1 + crop_width > crop_size
crop_width = crop_size - pad_x1;
end
end % padding > 0 || square
window = im(bbox(2):bbox(4), bbox(1):bbox(3), :);
% We turn off antialiasing to better match OpenCV's bilinear
% interpolation that is used in Caffe's WindowDataLayer.
tmp = imresize(window, [crop_height crop_width], ...
'bilinear', 'antialiasing', false);
if ~isempty(image_mean)
tmp = tmp - image_mean(pad_h+(1:crop_height), pad_w+(1:crop_width), :);
end
%figure(2); window_ = tmp; imagesc((window_-min(window_(:)))/(max(window_(:))-min(window_(:)))); axis image;
window = zeros(crop_size, crop_size, 3, 'single');
window(pad_h+(1:crop_height), pad_w+(1:crop_width), :) = tmp;
%figure(3); imagesc((window-min(window(:)))/(max(window(:))-min(window(:)))); axis image; pause;