-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkd_tree.h
285 lines (239 loc) · 7.37 KB
/
kd_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <stdio.h>
#include "linked_list.h"
/**
*
* A generic K-D Tree implementation
*
* Note: This uses `double` type as a key, hence a real number value.
*
* */
typedef struct KDTreeNode{
double* key;
struct list* data;
struct KDTreeNode* left;
struct KDTreeNode* right;
} KDTreeNode;
typedef struct KDTree{
int dimension;
KDTreeNode* root;
} KDTree;
/**
*
* Instantiate a new KDTree instance
*
* */
KDTree* get_new_kd_tree(int dimension){
KDTree *tree = (KDTree*) malloc(sizeof(KDTree));
tree->root = NULL;
tree->dimension = dimension;
return tree;
}
/**
*
* Instantiate a new KDTreeNode instance
*
* */
KDTreeNode* _get_new_kd_tree_node(double *key, int dimension){
KDTreeNode *node = (KDTreeNode*) malloc(sizeof(KDTreeNode));
node->key = key;
node->right = NULL;
node->left=NULL;
node->data = get_new_list();
return node;
}
/**
*
* Add data to linked list inside KDTreeNode as diffrent,
* records with same co-ordinates might exist
*
* */
void _kd_node_add_data(KDTreeNode *node, void *data){
append(node->data,data);
}
/**
*
* Check if all dimensions (x,y in this case) are same for
* two nodes.
*
* */
int _keys_are_same(double* key1, double* key2, int key_size){
for(int i = 0; i<key_size; ++i){
if(key1[i]!=key2[i]){
return 0;
}
}
return 1;
}
/**
*
* Insert a node into KDTree
*
* */
void _kd_tree_insert_helper(KDTree *tree, KDTreeNode *curr_node,
double *key, void *data, int depth){
if(!curr_node){
tree->root = _get_new_kd_tree_node(key,tree->dimension);
_kd_node_add_data(tree->root,data);
return;
}
int curr_dim = depth%(tree->dimension);
if(key[curr_dim]>=curr_node->key[curr_dim]){
if(_keys_are_same(key,curr_node->key,tree->dimension)){
_kd_node_add_data(curr_node,data);
}
else if(!curr_node->right){
curr_node->right = _get_new_kd_tree_node(key,tree->dimension);
_kd_node_add_data(curr_node->right,data);
} else {
_kd_tree_insert_helper(tree,curr_node->right,key,data,depth+1);
}
} else {
if(!curr_node->left){
curr_node->left = _get_new_kd_tree_node(key,tree->dimension);
_kd_node_add_data(curr_node->left,data);
} else {
_kd_tree_insert_helper(tree,curr_node->left,key,data,depth+1);
}
}
}
/**
*
* Wrapper to insert into KDTree
*
* */
void kd_tree_insert(KDTree *tree, double *key, void *data){
_kd_tree_insert_helper(tree,tree->root,key,data,0);
}
/**
*
* Get euclidean distance of n-dimensions
*
**/
double get_euclidean_distance(double* key1, double* key2, int key_size){
double squared_diff = 0.0;
for(int i = 0; i<key_size; ++i){
squared_diff += pow(key1[i]-key2[i],2.0);
}
return sqrt(squared_diff);
}
/**
*
* Find a records closest to given co-ordinate
*
**/
void _find_closest_helper(KDTree *tree, KDTreeNode *curr_node,
double *key, int depth, KDTreeNode *best_node,
double *best_score, int* comparisons){
if(!curr_node){
return;
}
// Increment the comparions count
*comparisons+=1;
double curr_dis = get_euclidean_distance(key,curr_node->key,tree->dimension);
int curr_dim = depth/(tree->dimension);
// Check if euclidean distanc b/w query node and curr_node is best yet
if (curr_dis <= *best_score){
*best_score = curr_dis;
memcpy(best_node,curr_node,sizeof(KDTreeNode));
// If going left is a better choice, first go left and then right
if(curr_node->key[curr_dim]>key[curr_dim]){
_find_closest_helper(tree,curr_node->left,key,depth+1
,best_node,best_score,comparisons);
_find_closest_helper(tree,curr_node->right,key,depth+1
,best_node,best_score,comparisons);
// If going right is a better choice, go right first and then left
} else {
_find_closest_helper(tree,curr_node->right,key,depth+1
,best_node,best_score,comparisons);
_find_closest_helper(tree,curr_node->left,key,depth+1
,best_node,best_score,comparisons);
}
// If current euclidean distance is not the best yet, prune one branch
} else{
// Prune right branch, go left.
if(curr_node->key[curr_dim] > key[curr_dim]){
_find_closest_helper(tree,curr_node->left,key,depth+1
,best_node,best_score,comparisons);
// Prune left branch, got right.
} else {
_find_closest_helper(tree,curr_node->right,key,depth+1
,best_node,best_score,comparisons);
}
}
}
/**
*
* Wrapper to find a records closest to given co-ordinate
*
* */
KDTreeNode* find_closest(KDTree *tree, double *key){
double best_score = __DBL_MAX__;
KDTreeNode* best_node = _get_new_kd_tree_node(NULL,tree->dimension);
int comparisons = 0;
_find_closest_helper(tree,tree->root,key,0,best_node,&best_score,&comparisons);
for(int i = 0; i<tree->dimension; i++){
printf("%lf ",key[i]);
}
printf("--> %d\n",comparisons);
return best_node;
}
/**
*
* Find closest record in a given radius for given co-ordinate
*
* */
void _find_closest_in_radius_helper(KDTree *tree, double *key, double radius,
struct list *neighbors, int depth, double *best_score,
KDTreeNode *curr_node, int *comparisons){
if(!curr_node){
return;
}
*comparisons+=1;
int curr_dim = depth%(tree->dimension);
double curr_dis = get_euclidean_distance(curr_node->key, key, tree->dimension);
if(curr_dis <= radius){
append(neighbors,(void *)curr_node->data);
}
if(curr_dis <= *best_score){
*best_score = curr_dis;
if(curr_node->key[curr_dim] > key[curr_dim]){
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->left,comparisons);
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->right,comparisons);
} else {
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->right,comparisons);
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->left,comparisons);
}
} else {
if(curr_node->key[curr_dim] > key[curr_dim]){
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->left,comparisons);
} else {
_find_closest_in_radius_helper(tree,key,radius,neighbors,depth+1,
best_score,curr_node->right,comparisons);
}
}
}
/**
*
* Wrapper for finding closest record in a given radius for given co-ordinate
*
* */
struct list* find_closest_in_radius(KDTree *tree, double *key, double radius){
double best_score = __DBL_MAX__;
int comparison_count = 0;
struct list* neighbors = get_new_list();
_find_closest_in_radius_helper(tree,key,radius,neighbors,0
,&best_score,tree->root,&comparison_count);
for(int i = 0; i<tree->dimension; i++){
printf("%lf ",key[i]);
}
printf("--> %d\n",comparison_count);
return neighbors;
}