-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imagenet.py
274 lines (251 loc) · 11.8 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import tqdm
from functools import partial
import timm
import random
from timm.loss import SoftTargetCrossEntropy
from timm.data import Mixup
from parser_imagenet import get_args
from auto_LiRPA.utils import MultiAverageMeter
import torch.nn.functional as F
from utils import *
import torch.nn as nn
import numpy as np
from evaluate import evaluate_aa
from pgd import evaluate_pgd,evaluate_CW
from auto_LiRPA.utils import logger
from autoattack import AutoAttack
from utils import normalize
args = get_args()
args.out_dir = args.out_dir+"_"+args.dataset+"_"+args.model+"_"+args.method+"_warmup"
args.out_dir = args.out_dir +"/seed"+str(args.seed)
if args.ARD:
args.out_dir = args.out_dir + "_ARD"
if args.PRM:
args.out_dir = args.out_dir + "_PRM"
if args.scratch:
args.out_dir = args.out_dir + "_no_pretrained"
if args.load:
args.out_dir = args.out_dir + "_load"
args.out_dir = args.out_dir + "/weight_decay_{:.6f}/".format(
args.weight_decay)+ "drop_rate_{:.6f}/".format(args.drop_rate)+"nw_{:.6f}/".format(args.n_w)
print(args.out_dir)
os.makedirs(args.out_dir,exist_ok=True)
logfile = os.path.join(args.out_dir, 'log_{:.4f}.log'.format(args.weight_decay))
file_handler = logging.FileHandler(logfile)
file_handler.setFormatter(logging.Formatter('%(levelname)-8s %(asctime)-12s %(message)s'))
logger.addHandler(file_handler)
logger.info(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
resize_size = args.resize
crop_size = args.crop
train_loader, test_loader = get_loaders(args)
print(args.model)
if args.model == "vit_base_patch16_224_in21k":
from model_for_imagenet.vit import vit_base_patch16_224_in21k
model = vit_base_patch16_224_in21k(pretrained=(not args.scratch), num_classes=1000).cuda()
model = nn.DataParallel(model)
logger.info('Model{}'.format(model))
elif args.model == "swin_base_patch4_window7_224_in22k":
args.momentum = 0.5
from model_for_imagenet.swin import swin_base_patch4_window7_224_in22k
model = swin_base_patch4_window7_224_in22k(pretrained = (not args.scratch),num_classes =1000).cuda()
model = nn.DataParallel(model)
logger.info('Model{}'.format(model))
else:
raise ValueError("Model doesn't exist!")
model.train()
if args.load:
checkpoint = torch.load(args.load_path)
model.load_state_dict(checkpoint['state_dict'])
def evaluate_natural(args, model, test_loader, verbose=False):
model.eval()
with torch.no_grad():
meter = MultiAverageMeter()
test_loss = test_acc = test_n = 0
def test_step(step, X_batch, y_batch):
X, y = X_batch.cuda(), y_batch.cuda()
output = model(X)
loss = F.cross_entropy(output, y)
meter.update('test_loss', loss.item(), y.size(0))
meter.update('test_acc', (output.max(1)[1] == y).float().mean(), y.size(0))
for step, (X_batch, y_batch) in enumerate(test_loader):
test_step(step, X_batch, y_batch)
logger.info('Evaluation {}'.format(meter))
def train_adv(args, model, ds_train, ds_test, logger):
mu = torch.tensor(imagenet_mean).view(3, 1, 1).cuda()
std = torch.tensor(imagenet_std).view(3, 1, 1).cuda()
upper_limit = ((1 - mu) / std).cuda()
lower_limit = ((0 - mu) / std).cuda()
epsilon_base = (args.epsilon / 255.) / std
alpha = (args.alpha / 255.) / std
train_loader, test_loader = ds_train, ds_test
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active :
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.labelsmoothvalue, num_classes=1000)
if mixup_active:
criterion = SoftTargetCrossEntropy()
else:
criterion = nn.CrossEntropyLoss()
steps_per_epoch = len(train_loader)
opt = torch.optim.SGD(model.parameters(), lr=args.lr_max, momentum=args.momentum, weight_decay=args.weight_decay)
if args.delta_init == 'previous':
delta = torch.zeros(args.batch_size, 3, 32, 32).cuda()
lr_steps = args.epochs * steps_per_epoch
def lr_schedule(t):
if t< args.epochs-5:
return args.lr_max
elif t< args.epochs-2:
return args.lr_max*0.1
else:
return args.lr_max * 0.01
epoch_s = 0
evaluate_natural(args, model, test_loader, verbose=False)
for epoch in tqdm.tqdm(range(epoch_s + 1, args.epochs + 1)):
train_loss = 0
train_acc = 0
train_n = 0
def train_step(X, y,t,mixup_fn):
model.train()
def attn_drop_mask_grad(module, grad_in, grad_out, drop_rate):
new = np.random.rand()
if new > drop_rate:
gamma = 0
else:
gamma = 1
if len(grad_in) == 1:
mask = torch.ones_like(grad_in[0]) * gamma
return (mask * grad_in[0][:],)
else:
mask = torch.ones_like(grad_in[0]) * gamma
mask_1 = torch.ones_like(grad_in[1]) * gamma
return (mask * grad_in[0][:], mask_1 * grad_in[1][:])
if t < args.n_w:
drop_rate = t / args.n_w * args.drop_rate
else:
drop_rate = args.drop_rate
drop_hook_func = partial(attn_drop_mask_grad, drop_rate=drop_rate)
model.eval()
handle_list = list()
if args.model in ["vit_base_patch16_224_in21k"]:
if args.ARD:
from model_for_imagenet.vit import Block
for name, module in model.named_modules():
if isinstance(module, Block):
handle_list.append(module.drop_path.register_backward_hook(drop_hook_func))
elif args.model in ["swin_base_patch4_window7_224_in22k"]:
if args.ARD:
from model_for_imagenet.swin import SwinTransformerBlock
for name, module in model.named_modules():
if isinstance(module, SwinTransformerBlock):
handle_list.append(module.drop_path.register_backward_hook(drop_hook_func))
model.train()
if args.method == 'AT':
X = X.cuda()
y = y.cuda()
if mixup_fn is not None:
X, y = mixup_fn(X, y)
def pgd_attack():
model.eval()
epsilon = epsilon_base.cuda()
delta = torch.zeros_like(X).cuda()
if args.delta_init == 'random':
for i in range(len(epsilon)):
delta[:, i, :, :].uniform_(-epsilon[i][0][0].item(), epsilon[i][0][0].item())
delta.data = clamp(delta, lower_limit - X, upper_limit - X)
delta.requires_grad = True
for _ in range(args.attack_iters):
# patch drop
add_noise_mask = torch.ones_like(X)
grid_num_axis = int(args.resize / args.patch)
max_num_patch = grid_num_axis * grid_num_axis
ids = [i for i in range(max_num_patch)]
random.shuffle(ids)
num_patch = int(max_num_patch * (1 - drop_rate))
if num_patch !=0:
ids = np.array(ids[:num_patch])
rows, cols = ids // grid_num_axis, ids % grid_num_axis
for r, c in zip(rows, cols):
add_noise_mask[:, :, r * args.patch:(r + 1) * args.patch,
c * args.patch:(c + 1) * args.patch] = 0
if args.PRM:
delta = delta * add_noise_mask
output = model(X + delta)
loss = criterion(output, y)
grad = torch.autograd.grad(loss, delta)[0].detach()
delta.data = clamp(delta + alpha * torch.sign(grad), -epsilon, epsilon)
delta.data = clamp(delta, lower_limit - X, upper_limit - X)
delta = delta.detach()
model.train()
if len(handle_list)!=0:
for handle in handle_list:
handle.remove()
return delta
delta = pgd_attack()
X_adv = X + delta
output = model(X_adv)
loss = criterion(output, y)
opt.zero_grad()
(loss / args.accum_steps).backward()
# print(output.shape,y.shape)
acc = (output.max(1)[1] == y.max(1)[1]).float().mean()
return loss, acc,y
for step, (X, y) in enumerate(train_loader):
batch_size = args.batch_size // args.accum_steps
epoch_now = epoch - 1 + (step + 1) / len(train_loader)
for t in range(args.accum_steps):
X_ = X[t * batch_size:(t + 1) * batch_size].cuda() # .permute(0, 3, 1, 2)
y_ = y[t * batch_size:(t + 1) * batch_size].cuda() # .max(dim=-1).indices
if len(X_) == 0:
break
loss, acc,y = train_step(X_,y_,epoch_now,mixup_fn)
train_loss += loss.item() * y_.size(0)
train_acc += acc.item() * y_.size(0)
train_n += y_.size(0)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
opt.step()
opt.zero_grad()
if (step + 1) % args.log_interval == 0 or step + 1 == steps_per_epoch:
logger.info('Training epoch {} step {}/{}, lr {:.4f} loss {:.4f} acc {:.4f}'.format(
epoch, step + 1, len(train_loader),
opt.param_groups[0]['lr'],
train_loss / train_n, train_acc / train_n
))
lr = lr_schedule(epoch_now)
opt.param_groups[0].update(lr=lr)
path = os.path.join(args.out_dir, 'checkpoint_{}'.format(epoch))
evaluate_natural(args, model, test_loader, verbose=False)
if args.test:
with open(os.path.join(args.out_dir, 'test_acc.txt'), 'a') as new:
meter_test = evaluate_natural(args, model, test_loader, verbose=False)
new.write('{}\n'.format(meter_test))
with open(os.path.join(args.out_dir, 'test_PGD5.txt'),'a') as new:
args.eval_iters = 5
args.eval_restarts = 1
pgd_loss, pgd_acc = evaluate_pgd(args, model, test_loader)
logger.info('test_PGD5 : loss {:.4f} acc {:.4f}'.format(pgd_loss, pgd_acc))
new.write('{:.4f} {:.4f}\n'.format(pgd_loss, pgd_acc))
if epoch == args.epochs:
torch.save({'state_dict': model.state_dict(), 'epoch': epoch, 'opt': opt.state_dict()}, path)
logger.info('Checkpoint saved to {}'.format(path))
train_adv(args, model, train_loader, test_loader, logger)
args.eval_iters = 20
logger.info(args.out_dir)
print(args.out_dir)
evaluate_natural(args, model, test_loader, verbose=False)
cw_loss, cw_acc = evaluate_CW(args, model,test_loader)
logger.info('cw20 : loss {:.4f} acc {:.4f}'.format(cw_loss, cw_acc))
#
#
pgd_loss, pgd_acc = evaluate_pgd(args, model,test_loader)
logger.info('PGD20 : loss {:.4f} acc {:.4f}'.format(pgd_loss, pgd_acc))
args.eval_iters = 100
pgd_loss, pgd_acc = evaluate_pgd(args, model,test_loader)
logger.info('PGD100 : loss {:.4f} acc {:.4f}'.format(pgd_loss, pgd_acc))
at_path = os.path.join(args.out_dir, 'result_'+'_autoattack.txt')
evaluate_aa(args, model,at_path, args.AA_batch)