forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator_cifar_benchmark.py
155 lines (133 loc) · 5.13 KB
/
estimator_cifar_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Estimator benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import time
import os
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
DATA_DIR = '/data/cifar10_data/cifar-10-batches-bin'
class EstimatorCifar10BenchmarkTests(tf.test.Benchmark):
"""Benchmarks and accuracy tests for Estimator ResNet56."""
local_flags = None
def __init__(self, output_dir=None):
self.output_dir = output_dir
def resnet56_1_gpu(self):
"""Test layers model with Estimator and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def resnet56_fp16_1_gpu(self):
"""Test layers FP16 model with Estimator and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def resnet56_2_gpu(self):
"""Test layers model with Estimator and dist_strat. 2 GPUs."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('resnet56_2_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def resnet56_fp16_2_gpu(self):
"""Test layers FP16 model with Estimator and dist_strat. 2 GPUs."""
self._setup()
flags.FLAGS.num_gpus = 2
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_2_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def unit_test(self):
"""A lightweigth test that can finish quickly"""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
flags.FLAGS.resnet_size = 8
flags.FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = cifar_main.run_cifar(flags.FLAGS)
wall_time_sec = time.time() - start_time_sec
self.report_benchmark(
iters=stats['global_step'],
wall_time=wall_time_sec,
extras={
'accuracy':
self._json_description(stats['accuracy'].item(), priority=0),
'accuracy_top_5':
self._json_description(stats['accuracy_top_5'].item()),
})
def _json_description(self,
value,
priority=None,
min_value=None,
max_value=None):
"""Get a json-formatted string describing the attributes for a metric"""
attributes = {}
attributes['value'] = value
if priority:
attributes['priority'] = priority
if min_value:
attributes['min_value'] = min_value
if max_value:
attributes['max_value'] = max_value
if min_value or max_value:
succeeded = True
if min_value and value < min_value:
succeeded = False
if max_value and value > max_value:
succeeded = False
attributes['succeeded'] = succeeded
return json.dumps(attributes)
def _get_model_dir(self, folder_name):
return os.path.join(self.output_dir, folder_name)
def _setup(self):
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
if EstimatorCifar10BenchmarkTests.local_flags is None:
cifar_main.define_cifar_flags()
# Loads flags to get defaults to then override.
flags.FLAGS(['foo'])
saved_flag_values = flagsaver.save_flag_values()
EstimatorCifar10BenchmarkTests.local_flags = saved_flag_values
return
flagsaver.restore_flag_values(EstimatorCifar10BenchmarkTests.local_flags)