-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpix2pix_GAN.py
408 lines (359 loc) · 15.9 KB
/
pix2pix_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from keras.optimizers import Adam
from keras.initializers import RandomNormal
from keras.models import Model
from keras.models import Input
from keras.models import Sequential, model_from_json
from keras.layers import Conv2D
from keras.layers import LeakyReLU
from keras.layers import Activation
from keras.layers import Concatenate
from keras.layers import BatchNormalization
from keras.layers import Conv2DTranspose
from keras.layers import Dropout
from keras.utils.vis_utils import plot_model
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib as mpl
import os
from pandas import DataFrame
import pandas as pd
from PIL import Image
from random import randint
import copy
import shutil
import glob
# define the discriminator model
def define_discriminator(image_shape, learning_rate_discriminator = 0.0002):
# weight initialization
init = RandomNormal(stddev=0.02)
# source image input
in_src_image = Input(shape=image_shape)
# target image input
in_target_image = Input(shape=image_shape)
# concatenate images channel-wise
merged = Concatenate()([in_src_image, in_target_image])
# C64
d = Conv2D(64, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(merged)
d = LeakyReLU(alpha=0.2)(d)
# C128
d = Conv2D(128, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
d = BatchNormalization()(d)
d = LeakyReLU(alpha=0.2)(d)
# C256
d = Conv2D(256, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
d = BatchNormalization()(d)
d = LeakyReLU(alpha=0.2)(d)
# C512
d = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
d = BatchNormalization()(d)
d = LeakyReLU(alpha=0.2)(d)
# second last output layer
d = Conv2D(512, (4,4), padding='same', kernel_initializer=init)(d)
d = BatchNormalization()(d)
d = LeakyReLU(alpha=0.2)(d)
# patch output
d = Conv2D(1, (4,4), padding='same', kernel_initializer=init)(d)
patch_out = Activation('sigmoid')(d)
# define model
model = Model([in_src_image, in_target_image], patch_out)
# compile model
opt = Adam(lr=learning_rate_discriminator, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt, loss_weights=[0.5])
return model
# define an encoder block
def define_encoder_block(layer_in, n_filters, batchnorm=True):
# weight initialization
init = RandomNormal(stddev=0.02)
# add downsampling layer
g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(layer_in)
# conditionally add batch normalization
if batchnorm:
g = BatchNormalization()(g, training=True)
# leaky relu activation
g = LeakyReLU(alpha=0.2)(g)
return g
# define a decoder block
def decoder_block(layer_in, skip_in, n_filters, dropout=True):
# weight initialization
init = RandomNormal(stddev=0.02)
# add upsampling layer
g = Conv2DTranspose(n_filters, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(layer_in)
# add batch normalization
g = BatchNormalization()(g, training=True)
# conditionally add dropout
if dropout:
g = Dropout(0.5)(g, training=True)
# merge with skip connection
g = Concatenate()([g, skip_in])
# relu activation
g = Activation('relu')(g)
return g
# define the standalone generator model
def define_generator(image_shape=(128,128,4)):
# weight initialization
init = RandomNormal(stddev=0.02)
# image input
in_image = Input(shape=image_shape)
# encoder model: C64-C128-C256-C512-C512-C512-C512-C512
e1 = define_encoder_block(in_image, 64, batchnorm=False)
e2 = define_encoder_block(e1, 128)
e3 = define_encoder_block(e2, 256)
e4 = define_encoder_block(e3, 512)
e5 = define_encoder_block(e4, 512)
e6 = define_encoder_block(e5, 512)
# e7 = define_encoder_block(e6, 512)
# bottleneck, no batch norm and relu
b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(e6)
b = Activation('relu')(b)
# decoder model: CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128
# d1 = decoder_block(b, e7, 512)
d2 = decoder_block(b, e6, 512)
d3 = decoder_block(d2, e5, 512)
d4 = decoder_block(d3, e4, 512, dropout=False)
d5 = decoder_block(d4, e3, 256, dropout=False)
d6 = decoder_block(d5, e2, 128, dropout=False)
d7 = decoder_block(d6, e1, 64, dropout=False)
# output
g = Conv2DTranspose(4, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d7)
out_image = Activation('tanh')(g)
# define model
model = Model(in_image, out_image)
return model
# define the combined generator and discriminator model, for updating the generator
def define_gan(g_model, d_model, image_shape, learning_rate_generator = 0.0002):
# make weights in the discriminator not trainable
d_model.trainable = False
# define the source image
in_src = Input(shape=image_shape)
# connect the source image to the generator input. The input to the generator are
# images with only obstacles
gen_out = g_model(in_src)
# connect the source input and generator output to the discriminator input
dis_out = d_model([in_src, gen_out])
# src image as input, generated image and classification output
model = Model(in_src, [dis_out, gen_out])
# compile model
opt = Adam(lr=learning_rate_generator, beta_1=0.5)
model.compile(loss=['binary_crossentropy', 'mae'], optimizer=opt, loss_weights=[1,100])
return model
# select a batch of random samples, returns images and target
def generate_real_samples(dataset, n_samples, patch_shape):
# unpack dataset
image_obsta, image_paths_n_obsta = dataset
# choose random instances
indices = list(range(0,image_obsta.shape[0]))
random.shuffle(indices)
ix = indices[0:n_samples]
# retrieve selected images
X1, X2 = image_obsta[ix], image_paths_n_obsta[ix]
# generate 'real' class labels (1)
y = np.ones((n_samples, patch_shape, patch_shape, 1))
return [X1, X2], y
# generate a batch of images, returns images and targets
def generate_fake_samples(g_model, samples, patch_shape):
# generate fake instance
X = g_model.predict(samples)
# create 'fake' class labels (0)
y = np.zeros((len(X), patch_shape, patch_shape, 1))
return X, y
# # extracts path images. Its given a batch of color images with obstacles and paths
# # implement a thresholding method to extract only the path i.e. remove the obstacles
# def extract_path_image(imgs, im_size = 128):
# size = imgs.shape[0]
# print("size is : ", size)
# for i in range(size):
# im = imgs[i]
# for j in range(im_size):
# for k in range(im_size):
# pixel = im[j][k]
# # remove the obstacles
# if(pixel[1]>80 and pixel[0]<40 and pixel[2]<40):
# im[j][k] = [0,0,0,255]
# return imgs
# input is a set of color images with obstacles and paths. It removed the paths and outputs the set of images with
# only the obstacles
def remove_paths(imgs, im_size = 128):
size = imgs.shape[0]
for i in range(size):
im = imgs[i]
for j in range(im_size):
for k in range(im_size):
pixel = im[j][k]
# remove the white paths
if((abs((pixel[0]-pixel[1])/2)<10 and abs((pixel[1]-pixel[2])/2)<10) or (pixel[0]>=100 and pixel[1]>=100 and pixel[2]>=100)):
im[j][k] = [0,0,0,255] # convert white pixels to black
# remove the blue paths
elif((pixel[2]>=80 and pixel[0]<pixel[2]-20 and pixel[1]<pixel[2]-20 and pixel[0]<80 and pixel[1]<80) or (pixel[0]<40 and pixel[1]<40 and pixel[2]<80)):
im[j][k] = [0,0,0,255]
return imgs
# train pix2pix models
def train_save(save_path, d_model, g_model, gan_model, dataset, n_epochs=100, n_batch=1, n_patch=8):
# calculate the number of batches per training epoch
trainA, trainB = dataset
bat_per_epo = int(len(trainA) / n_batch)
# calculate the number of training iterations
n_steps = bat_per_epo * n_epochs
# manually enumerate epochs
generator_loss = []
discriminator_loss = []
discriminator_loss_real = []
discriminator_loss_fake = []
for i in range(n_steps):
# select a batch of real samples
[real_image_obsta_batch, real_image_paths_n_obsta_batch], label_real = generate_real_samples(dataset, n_batch, n_patch)
# generate a batch of fake samples
fake_image_paths_n_obsta, label_fake = generate_fake_samples(g_model, real_image_obsta_batch, n_patch)
# update discriminator for real samples
d_loss1 = d_model.train_on_batch([real_image_obsta_batch, real_image_paths_n_obsta_batch], label_real)
# update discriminator for generated samples
d_loss2 = d_model.train_on_batch([real_image_obsta_batch, fake_image_paths_n_obsta], label_fake)
# update the generator
g_loss, _, _ = gan_model.train_on_batch(real_image_obsta_batch, [label_real, real_image_paths_n_obsta_batch])
# store the images that the generator generates after each epoch
if(i % bat_per_epo == 0):
[real_image_obsta_sample, real_image_paths_n_obsta_sample], label_real = generate_real_samples(dataset, 1, n_patch)
generated_image = g_model.predict(real_image_obsta_sample)
mpl.use('pdf')
title_fontsize = 'small'
fig = plt.figure(dpi=300, tight_layout=True)
ax = np.zeros(2, dtype=object)
gs = fig.add_gridspec(1,2)
ax[0] = fig.add_subplot(gs[0, 0])
ax[1] = fig.add_subplot(gs[0, 1])
ax[0].imshow(np.reshape(real_image_paths_n_obsta_sample,(128, 128, 4)).astype('uint8'))
ax[0].set_title('Original Image', fontsize = title_fontsize)
ax[0].set_xlabel('(a)')
ax[1].imshow(np.reshape(generated_image,(128, 128, 4)))
ax[1].set_title('Image Generated by Generator', fontsize = title_fontsize)
ax[1].set_xlabel('(b)')
for a in ax:
a.set_xticks([])
a.set_yticks([])
plt.savefig(save_path +'/Epoch_'+ str(int(i/bat_per_epo))+"_paths.pdf")
fig2 = plt.figure(dpi=300, tight_layout=True)
ax = np.zeros(2, dtype=object)
gs = fig2.add_gridspec(1,2)
ax[0] = fig2.add_subplot(gs[0, 0])
ax[1] = fig2.add_subplot(gs[0, 1])
ax[0].imshow(np.reshape(real_image_obsta_sample,(128, 128, 4)).astype('uint8'))
ax[0].set_title('Original Image', fontsize = title_fontsize)
ax[0].set_xlabel('(a)')
ax[1].imshow(np.reshape(generated_image,(128, 128, 4)))
ax[1].set_title('Image Generated by Generator', fontsize = title_fontsize)
ax[1].set_xlabel('(b)')
for a in ax:
a.set_xticks([])
a.set_yticks([])
plt.savefig(save_path +'/Epoch_'+ str(int(i/bat_per_epo))+"_obst.pdf")
discriminator_loss_real.append(d_loss1)
discriminator_loss_fake.append(d_loss2)
generator_loss.append(g_loss)
discriminator_loss.append(d_loss1+d_loss2)
print(i)
# save the plots for loss etc
x = np.linspace(0, n_steps, n_steps)
plt.figure()
plt.plot(x, discriminator_loss, color = 'blue')
plt.ylabel('Discriminator Loss')
plt.xlabel('Number of iterations')
# plt.show()
# plt.legend('upper right')
# plt.gca().legend(('discriminator','generator'))
plt.savefig(save_path+'/loss_discriminator.pdf')
plt.figure()
plt.plot(x, generator_loss, color = 'orange')
plt.ylabel('Generator Loss')
plt.xlabel('Number of iterations')
# plt.show()
# plt.legend('upper right')
# plt.gca().legend(('discriminator loss for fake images','discriminator loss for real images'))
plt.savefig(save_path+'/loss_generator.pdf')
writer = pd.ExcelWriter(save_path+'/loss.xlsx', engine='xlsxwriter')
df1 = DataFrame({'Generator Loss': generator_loss, 'Discriminator Loss': discriminator_loss, 'Discriminator Loss for Real Images': discriminator_loss_real, 'Discriminator Loss for Fake Images': discriminator_loss_fake})
df1.to_excel(writer, sheet_name='sheet1', index=False)
writer.save()
# Saving the Gnerator Model and weights since that is the only one necessary
model_json = g_model.to_json()
with open(save_path+'/Generator_model_tex.json', "w") as json_file:
json_file.write(model_json)
g_model.save_weights(save_path+'/Generator_model_weights_tex.h5')
def load_model_and_check(load_path, test_data):
json_file = open(load_path+'/Generator_model_tex.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
print('Model loaded')
loaded_model.load_weights(load_path+'/Generator_model_weights_tex.h5')
for i in range(test_data.shape[0]):
rand_im = test_data[i]
rand_im = rand_im[np.newaxis,:,:,:]
generated_image = loaded_model.predict(rand_im)
mpl.use('pdf')
title_fontsize = 'small'
fig = plt.figure(dpi=300, tight_layout=True)
ax = np.zeros(2, dtype=object)
gs = fig.add_gridspec(1,2)
ax[0] = fig.add_subplot(gs[0, 0])
ax[1] = fig.add_subplot(gs[0, 1])
ax[0].imshow(np.reshape(rand_im,(128, 128, 4)).astype('uint8'))
ax[0].set_title('Test Image as Input', fontsize = title_fontsize)
ax[0].set_xlabel('(a)')
ax[1].imshow(np.reshape(generated_image,(128, 128, 4)))
ax[1].set_title('Image Generated by Generator', fontsize = title_fontsize)
ax[1].set_xlabel('(b)')
for a in ax:
a.set_xticks([])
a.set_yticks([])
plt.savefig(load_path +'/Test_Image_Level4_'+ str(i)+'.pdf')
def load_images(folder, im_size = (128,128), col = 1):
# load color images after resizing them !
im_list = []
for filename in os.listdir(folder):
p = os.path.join(folder, filename)
if p == folder + '/.DS_Store':
continue
# img = mpimg.imread(p)
if(col == 1):
img = Image.open(p).convert('L')
else:
img = Image.open(p)
im_resize = img.resize(im_size, Image.ANTIALIAS)
im_list.append(np.ravel(im_resize)) # flattened the images, we need to reshape them before printing
image_list = np.array(im_list)
return image_list
if __name__ == '__main__':
# define image shape
image_shape = (128,128,4)
image_size = (128,128)
col = 4 # set to 4 for color images and 1 for black and white images
image_tp = 'circuit'
#-------------------------------
ver = 13
lr_discriminator = 0.0001
lr_generator = 0.001
num_epochs = 5
num_batch = 1 # ensure that the batch size dives the number of samples entirely
# base_path = '/home/s3494950/thesis'
base_path = '/Users/swarajdalmia/Desktop/NeuroMorphicComputing/Code'
# load_path = base_path+'/Data/circuitImages/usefulCircuits/withObstacles_withoutNoise'
load_path = base_path+'/Data/circuitImages/usefulCircuits/smallerset_obstacles' # 56 items
# load_path = base_path+'/Data/biggerDataset'
save_path = base_path + '/Results/Trained_final_GANs/pix2pix/circuit_' + str(ver)
#-------------------------------
# images = load_images(load_path, image_size, col)
# images = np.reshape(images, (images.shape[0], image_size[0], image_size[1], col))
# d_model = define_discriminator(image_shape, learning_rate_discriminator=lr_discriminator)
# g_model = define_generator(image_shape)
# gan_model = define_gan(g_model, d_model, image_shape, learning_rate_generator=lr_generator)
# # load image data. [image_obsta, image_paths_n_obsta]
# im = copy.deepcopy(images)
# dataset = [remove_paths(im),images]
# print("removed paths")
# # train model
# train_save(save_path, d_model, g_model, gan_model, dataset, n_epochs = num_epochs, n_batch=num_batch)
p = '/Users/swarajdalmia/Desktop/NeuroMorphicComputing/Code/Data/circuitImages/usefulCircuits/test_obstacles'
testing_data = load_images(p, image_size, col)
testing_data = np.reshape(testing_data, (testing_data.shape[0], image_size[0], image_size[1], col))
load_model_and_check(save_path, testing_data)