-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_circuits_building.py
427 lines (376 loc) · 20.8 KB
/
simple_circuits_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import numpy as np
import random
import matplotlib.pyplot as plt
from matplotlib import colors
import matplotlib.patches as mpatches
from PIL import Image
circuit_dim = (64, 64)
# this uses emergent networks, that arise out of local reinforcement learning
def main():
# Some hyperparameters
len_upper = []
len_lower = []
# 5*500 images will be stored
for j in range(5):
prob_rand_global = 0.04*(j)
prob_rand_local = 0.3 + 0.1*(j-1)
for i in range(500):
num = j*500 + i
im_name = 'Image_'+str(num)+'.png'
upper_bound_steps = 275
circuit = build_circuit_background()
# display_circuit(circuit, 'Background Circuit')
# reached stpres whether the circuit reached the output wire
circuit, reached_top = make_paths(circuit, [int(circuit_dim[0]/3 - 1),5], [int(circuit_dim[0]/3 - 1), circuit_dim[1]-6], 1, 8, upper_bound_steps, prob_rand_local, prob_rand_global) # first input and first output
circuit, reached_bottom = make_paths(circuit, [int(2*circuit_dim[0]/3),5], [int(2*circuit_dim[0]/3), circuit_dim[1]-6] , 2, 9, upper_bound_steps, prob_rand_local, prob_rand_global)
# display_circuit(circuit, '')
# if both circuits connected then save them and the lengths of both of them in the list
if(reached_top == True and reached_bottom == True):
# save the circuits as is with legend and eveything else
save_circuit(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/asIs_Legend/'+im_name)
# remove the legends here
save_circuit_simplified(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/asIs/'+im_name, True, True)
# remove the noise but keep obstacles
save_circuit_simplified(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/withObstacles_withoutNoise/'+im_name, True, False)
# remove the obstacles but keep the noise
save_circuit_simplified(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/withoutObstacles_withNoise/'+im_name, False, True)
a,b = path_lengths(circuit, 1,2)
len_upper.append(a)
len_lower.append(b)
# greyscale with obstacles
save_circuit_simplified(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/grey_withObstacles/'+im_name, True, False, True)
else:
save_circuit(circuit, '/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/failedCircuits/'+im_name)
# save the lengths of the successful circuits
len_upper = np.asarray(len_upper, dtype=np.int)
len_lower = np.asarray(len_lower, dtype=np.int)
np.savetxt('/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/len_upper.txt', len_upper, fmt='%d')
np.savetxt('/Users/swarajdalmia/Desktop/3B/NeuroMorphicComputing/Code/circuitImages/usefulCircuits/len_lower.txt', len_lower, fmt='%d')
# loading a np array
# b = np.loadtxt('test1.txt', dtype=int)
# this builds a basic background circuit. Adds inputs/outputs and obstacles and returns such an array
# 0 - obstacles(green), 1 - top wire(white), 2 - bottom wire(blue), 5 - background(black), 6 - input(red), 7 - output(red)
# 8 - temp top wire(grey), 9 - temp bottom wire(grey)
def build_circuit_background():
circuit = np.zeros(circuit_dim, dtype=int)
circuit = np.array([x + 5 for x in circuit]) # these are the background
# add inputs and outputs. The positions are handcrafted. The row placement is done to ensure equidistance and
# the columns are places to as to give as much possible space between the input/output while leaving some room
# behind
row = int(circuit_dim[0]/3 - 1) # 128/3 - 1 = 41
col = 4 # 4
circuit[row, col] = circuit[row-1:row+2, col+1] = 6
col = circuit_dim[1] - 5 # 123
circuit[row, col] = circuit[row-1:row+2, col-1] = 7
row = int(2*circuit_dim[0]/3) # 85
col = 4
circuit[row, col] = circuit[row-1:row+2, col+1] = 6
col = circuit_dim[1] - 5
circuit[row, col] = circuit[row-1:row+2, col-1] = 7
# add fixed obstacles
# circuit = place_obstacle(5,17, circuit)
# circuit = place_obstacle(5,46, circuit)
# circuit = place_obstacle(19,17, circuit)
# circuit = place_obstacle(19,46, circuit)
# add 8 variable obstacles of size 27*4
ob_size = [20,3]
for i in range(8):
row = random.randrange(4 + int(ob_size[0]/2), circuit_dim[0]- 4 - int(ob_size[0]/2)) # randrange doesnt include the end but includes the start. This is the midrow of the obstacle
col = 11 + int(i*5.6)
circuit = place_obstacle(row, col, circuit, ob_size)
return circuit
# returns the path lengths of the top and the bottom wire
def path_lengths(circuit, top_wire_color, bottom_wire_color):
unique, counts = np.unique(circuit, return_counts=True)
counts = dict(zip(unique, counts))
return counts[top_wire_color], counts[bottom_wire_color]
# row, col be mid position position for 2*9 obstacle
def place_obstacle(row, col, circuit, ob_size):
circuit[row-int(ob_size[0]/2):row+int(ob_size[0]/2), col:col+ob_size[1]] = 0
return circuit
def display_circuit(circuit, text, re_size = circuit_dim):
# create discrete colormap
cmap = colors.ListedColormap(['green', 'white', 'blue', 'black', 'red','red', 'darkgrey', 'darkgrey'])
bounds = [0,1,2,5,6,7,8,9]
labels = ['0','1','2','5','6','7','8','9']
col = {1:'green', 2:'white', 3:'blue', 4:'black', 5:'red', 6:'darkgrey'}
labels = {1:'Obstacles', 2:'Top Wire', 3:'Bottom Wire', 4:'Background', 5:'Input/Output', 6:'Unused Wire'}
norm = colors.BoundaryNorm(bounds, cmap.N)
fig, ax = plt.subplots()
ax.imshow(circuit, cmap=cmap, norm=norm, label = labels)
ax.grid(which='major', axis='both', linestyle='-', color='grey', linewidth=1)
patches =[mpatches.Patch(color=col[i],label=labels[i]) for i in col]
plt.legend(handles=patches, loc=1, borderaxespad=0., fontsize = 'xx-small')
plt.title(text)
plt.show()
def save_circuit(circuit, path, text = ""):
# create discrete colormap
cmap = colors.ListedColormap(['green', 'white', 'blue', 'black', 'red','red', 'darkgrey', 'darkgrey'])
bounds = [0,1,2,5,6,7,8,9]
labels = ['0','1','2','5','6','7','8','9']
col = {1:'green', 2:'white', 3:'blue', 4:'black', 5:'red', 6:'darkgrey'}
labels = {1:'Obstacles', 2:'Top Wire', 3:'Bottom Wire', 4:'Background', 5:'Input/Output', 6:'Unused Wire'}
norm = colors.BoundaryNorm(bounds, cmap.N)
fig, ax = plt.subplots()
ax.imshow(circuit, cmap=cmap, norm=norm, label = labels)
ax.grid(which='major', axis='both', linestyle='-', color='grey', linewidth=1)
patches =[mpatches.Patch(color=col[i],label=labels[i]) for i in col]
plt.legend(handles=patches, loc=1, borderaxespad=0., fontsize = 'xx-small')
plt.title(text)
plt.savefig(path, bbox_inches='tight')
def save_circuit_simplified(circuit, path, display_obstacles = True, display_noise = True, gre_scale = False):
# create discrete colormap
if(display_obstacles == False and display_noise == False):
cmap = colors.ListedColormap(['black', 'white', 'blue', 'black', 'red','red', 'black', 'black'])
elif(display_obstacles == True and display_noise == False):
cmap = colors.ListedColormap(['green', 'white', 'blue', 'black', 'red','red', 'black', 'black'])
elif(display_obstacles == False and display_noise == True):
cmap = colors.ListedColormap(['black', 'white', 'blue', 'black', 'red','red', 'darkgrey', 'darkgrey'])
else:
cmap = colors.ListedColormap(['green', 'white', 'blue', 'black', 'red','red', 'darkgrey', 'darkgrey'])
if(gre_scale == True):
cmap = colors.ListedColormap(['grey', 'white', 'white', 'black', 'white','white', 'black', 'black'])
bounds = [0,1,2,5,6,7,8,9]
norm = colors.BoundaryNorm(bounds, cmap.N)
plt.axis('off')
plt.legend('off')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(circuit, cmap=cmap, norm=norm)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
plt.savefig(path, bbox_inches='tight', pad_inches = 0)
# makes paths to connect the respective inputs to the respective outputs using probabalistic reinforcement
# learning, the start pos and the end pos are the mid circuit elements.
def make_paths(circuit, start_pos, end_pos, color_wire, color_temp_wire, upper_bound_steps, prob_rand_local, prob_rand_global):
# loop till a certain upper_bound_steps or till the output has been reached
i = 0
curr_pos = start_pos
# for the 1st iteration simply move ahead and add a wire
curr_pos[1] = curr_pos[1]+1
circuit[curr_pos[0],curr_pos[1]] = color_wire
reached = False
# at this stage there is a wire in curr_pos
while (i <= upper_bound_steps):
# add the next wire starting from curr_pos and update curr_pos
circuit, curr_pos = add_next_wire(circuit, curr_pos, end_pos, color_wire, color_temp_wire, prob_rand_local, prob_rand_global)
# check if output wire has been reached, if it is somewhat close, otherwise skip to ensure faster running
if(i >= 35 and calc_distance(curr_pos, end_pos)<3 and reached_output(curr_pos, end_pos)):
reached = True
break
# if(i%20 == 0):
# display_circuit(circuit, "Circuit after "+str(i)+" iterations")
i+=1
# display_circuit(circuit, "Final Circuit after "+str(i)+" iterations")
return circuit, reached
# calculates shortest manhattan distance
def calc_distance(curr_pos, end_pos):
return abs(curr_pos[0]-end_pos[0]) + abs(curr_pos[1]-end_pos[1])
# calculates euclidean distance
def calc_euclidean_dist(curr_pos, end_pos):
curr_pos = np.array(curr_pos)
end_pos =np.array(end_pos)
return np.linalg.norm(curr_pos - end_pos)
# checks if the curr_pos wire is connected to the output wire(specified by end_pos)
def reached_output(curr_pos, end_pos):
row = end_pos[0]
col = end_pos[1]
if(calc_distance(curr_pos, end_pos) == 1 or calc_distance(curr_pos, [row, col+1]) == 1 or
calc_distance(curr_pos, [row-1, col]) == 1 or calc_distance(curr_pos, [row+1, col])==1):
return True
return False
# randomly adds a global circuit element of type wire_color, the gloabl is in the top or bottom half depending on where we go !
def add_global_random_wire(circuit, color_temp_wire):
row_lims = [0,circuit_dim[0]]
if(color_temp_wire == 8):
row_lims[1] = circuit_dim[0]/2
else:
row_lims[0] = circuit_dim[0]/2
row_random = random.randrange(row_lims[0], row_lims[1])
col_random = random.randrange(0, circuit_dim[1])
i = 0
while(circuit[row_random, col_random] != 5 and i <=5):
row_random = random.randrange(row_lims[0], row_lims[1])
col_random = random.randrange(0, circuit_dim[1])
i+= 1
if(circuit[row_random, col_random] == 5):
circuit[row_random, col_random]= color_temp_wire
return circuit
# randomly adds a local circuit element either in the forward or backbard direction, which ever takes it closer to end_pos
def add_local_random_wire(circuit, color_temp_wire, curr_pos, end_pos):
found = False
i = 0
n_row = n_col = 0
sign = 1
if (curr_pos[1] >= end_pos[1] + 2):
sign = -1
while(found != True and i <=10):
i = i+1
n_row = curr_pos[0] + random.randint(0, 4) - 2
n_col = curr_pos[1] + random.randint(0, 2)*sign
# if blackground found and if its a valid entry
if (n_row>=0 and n_row <circuit_dim[0] and n_col>=0 and n_col<circuit_dim[1] and circuit[n_row, n_col] == 5):
found = True
if(found == True):
circuit[n_row,n_col] = color_temp_wire # random circuit element added
# print("random element added at", n_row, n_col)
return circuit
# returns true if addition of temp wire to pos_to_eval, connects to further temp wires. Else returns false
# at this point it is known that pos_to_eval contains empty space
def adds_further_extention(circuit, pos_to_eval, color_temp_wire):
row = pos_to_eval[0]
col = pos_to_eval[1]
if((row+1 <circuit_dim[0] and circuit[row+1, col] == color_temp_wire) or (row - 1 >=0 and circuit[row-1, col] == color_temp_wire)
or (col+1 <circuit_dim[1] and circuit[row, col+1] == color_temp_wire) or (col-1 >=0 and circuit[row, col-1] == color_temp_wire)):
return True
return False
# add a conecting wire in one of the 4 directions (considering distance and further connectivity) and considering there is space
def reward_based_extention(circuit, color_wire, color_temp_wire, curr_pos, end_pos):
weight = random.uniform(0.5, 1.25) # the distance metric adds distance 1 based on manhattan distance
curr_row = curr_pos[0]
curr_col = curr_pos[1]
# array [_,_,_,_] stores the weight of going forward, bakcward, top, down
# print("moving either forward/backward/top/down")
# print("curr_pos is ", curr_pos)
direction = [0,0,0,0]
# Weight for FORWARD direction !
# obstacles and circuit bounds considered and weights added for distance
if(curr_col+1>=circuit_dim[1] or circuit[curr_row, curr_col+1] != 5): #if going forward is not free or one cant go forward
direction[0] = -99
else:
direction[0] = calc_euclidean_dist(curr_pos, end_pos) - calc_euclidean_dist([curr_row, curr_col+1], end_pos)
# add weight if it connects to something forward. Add prob weight to ensure variability to metric
if(adds_further_extention(circuit, [curr_row, curr_col+1], color_temp_wire)):
direction[0] += weight
if(curr_col-1<0 or circuit[curr_row, curr_col-1] != 5): # going back
direction[1] = -99
else:
direction[1] = calc_euclidean_dist(curr_pos, end_pos) - calc_euclidean_dist([curr_row, curr_col-1], end_pos)
# add weight if it connects to something forward. Add prob weight to ensure variability to metric
if(adds_further_extention(circuit, [curr_row, curr_col-1], color_temp_wire)):
direction[1] += weight
if(curr_row == 0 or circuit[curr_row-1, curr_col] != 5): # going up
direction[2] = -99
else:
direction[2] = calc_euclidean_dist(curr_pos, end_pos) - calc_euclidean_dist([curr_row-1, curr_col], end_pos)
if(adds_further_extention(circuit, [curr_row-1, curr_col], color_temp_wire)):
direction[2] += weight
if(curr_row+1>=circuit_dim[0] or circuit[curr_row+1, curr_col] != 5): # going down
direction[3] = -99
else:
direction[3] = calc_euclidean_dist(curr_pos, end_pos) - calc_euclidean_dist([curr_row+1, curr_col], end_pos)
if(adds_further_extention(circuit, [curr_row+1, curr_col], color_temp_wire)):
direction[3] += weight
# print("direction metric", direction)
# find action with largest weight in random order and perform the action
fs = [forward_if_best, backward_if_best, up_if_best, down_if_best]
random.shuffle(fs)
found = False
for f in fs:
arg = [direction, circuit, color_temp_wire, curr_row, curr_col]
circuit, found = f(arg[0],arg[1],arg[2],arg[3],arg[4])
if(found):
break
return circuit
# if forward has highest weight in direction vector then go forward
def forward_if_best(direction, circuit, color_temp_wire, curr_row, curr_col):
# print("Tried forward")
if(direction[0] >= direction[1] and direction[0] >= direction[2] and direction[0] >= direction[3] and direction[0]>-0.5):
circuit[curr_row, curr_col + 1] = color_temp_wire
return circuit, True
return circuit, False
def backward_if_best(direction, circuit, color_temp_wire, curr_row, curr_col):
# print("Tried backward")
if(direction[1] >= direction[0] and direction[1] >= direction[2] and direction[1] >= direction[3] and direction[1]>-0.5):
circuit[curr_row, curr_col - 1] = color_temp_wire
return circuit, True
return circuit, False
def up_if_best(direction, circuit, color_temp_wire, curr_row, curr_col):
# print("Tried up")
if(direction[2] >= direction[0] and direction[2] >= direction[1] and direction[2] >= direction[3] and direction[2]>-0.5):
circuit[curr_row-1, curr_col] = color_temp_wire
return circuit, True
return circuit, False
def down_if_best(direction, circuit, color_temp_wire, curr_row, curr_col):
# print("Tried down")
if(direction[3] >= direction[0] and direction[3] >= direction[1] and direction[3] >= direction[2] and direction[3]>-0.5):
circuit[curr_row+1, curr_col] = color_temp_wire
return circuit, True
return circuit, False
# add next wire using reinforcement learning. Is it actually reinforcement learning ?
def add_next_wire(circuit, curr_pos, end_pos, color_wire, color_temp_wire, prob_rand_local, prob_rand_global):
prob = random.uniform(0, 1)
# This block adds a temp wire which is always present
# randomly add a global circuit element of type wire_color
if(prob < prob_rand_global):
# print('adds a random global wire')
circuit = add_global_random_wire(circuit, color_temp_wire)
# randomly add a wire in the neighbourhood of curr_pos. Add wire in the forward or backward direction depending on where end_pos
elif(prob < prob_rand_local+prob_rand_global):
# print('adds a random local wire')
circuit = add_local_random_wire(circuit, color_temp_wire, curr_pos, end_pos)
# add a conecting wire in one of the 4 directions (considering distance and further connectivity) and considering there is space
else:
# print('adds an extention wire to extend the path')
circuit = reward_based_extention(circuit, color_wire, color_temp_wire, curr_pos, end_pos)
# find leaf finalised the temp wires to the color_wire and and reached the leaf node
# display_circuit(circuit, "before finding leaf")
circuit, n_row, n_col = find_next_leaf(circuit, curr_pos[0], curr_pos[1], color_wire, color_temp_wire, end_pos)
# update position of curr_pos after adding wire
return circuit, [n_row, n_col]
# finds the next start position
def find_next_leaf(circuit, curr_row, curr_col, color_wire, color_temp_wire, end_pos):
# print("finding next leaf")
# print("current leaf is at", curr_row, curr_col)
fs = [go_foward, go_backward, go_down, go_up]
evaluation = True
while(evaluation):
# randomise which direction it checks initially
evaluation = False
random.shuffle(fs)
for f in fs:
arg = [circuit, curr_row, curr_col, color_wire, color_temp_wire]
circuit, curr_row, curr_col, moved = f(arg[0],arg[1],arg[2],arg[3],arg[4])
evaluation = (evaluation or moved) # even if there is one move, this stores true
if(reached_output([curr_row,curr_col], end_pos)):
break
# print("found next leaf")
# print("final leaf is at", curr_row, curr_col)
return circuit, curr_row, curr_col
def go_foward(circuit, curr_row, curr_col, color_wire, color_temp_wire):
moved = False
if(curr_col + 1<circuit_dim[1] and circuit[curr_row, curr_col + 1] == color_temp_wire):
circuit[curr_row, curr_col + 1] = color_wire
curr_col += 1
moved = True
# print("leaf moved forward")
return circuit, curr_row, curr_col, moved
def go_backward(circuit, curr_row, curr_col, color_wire, color_temp_wire):
moved = False
# the less than 43 is added so as to prevent circularity is as many situations as we can avoid.
if(curr_col - 1 >=0 and curr_col >= circuit_dim[1]-1 and circuit[curr_row, curr_col - 1] == color_temp_wire):
circuit[curr_row, curr_col - 1] = color_wire
curr_col += -1
moved = True
# print("leaf moved backward")
return circuit, curr_row, curr_col, moved
def go_up(circuit, curr_row, curr_col, color_wire, color_temp_wire):
moved = False
if(curr_row-1>=0 and circuit[curr_row-1, curr_col] == color_temp_wire):
circuit[curr_row-1, curr_col] = color_wire
curr_row += -1
moved = True
# print("leaf moved up")
return circuit, curr_row, curr_col, moved
def go_down(circuit, curr_row, curr_col, color_wire, color_temp_wire):
moved = False
if(curr_row+1<circuit_dim[0] and circuit[curr_row+1, curr_col] == color_temp_wire):
circuit[curr_row+1, curr_col] = color_wire
curr_row += 1
moved = True
# print("leaf moved down")
return circuit, curr_row, curr_col, moved
if __name__ == '__main__':
main()
print(1)