-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval_transmodel.py
162 lines (134 loc) · 7.34 KB
/
eval_transmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Evaluate transition model
"""
import os
import random
import numpy as np
import os.path as osp
from tqdm import tqdm
import joblib
import torch
from models.transmodel import ParticleNet
from datasets.dataset_splishsplash_rawdata import ParticleDataset
from utils.particles_utils import record2obj
from utils.point_eval import FluidErrors
class TransModelEvaluation():
def __init__(self, options):
self.seed_everything(10)
self.options = options
self.device = torch.device('cuda')
self.exppath = osp.join(self.options.expdir, self.options.expname)
gravity = self.options.TEST.gravity
self.transition_model = ParticleNet(gravity=gravity).to(self.device)
ckpt = torch.load(self.options.resume_from)
if 'transition_model_state_dict' in ckpt:
ckpt = ckpt['transition_model_state_dict']
elif 'model_state_dict' in ckpt:
ckpt = ckpt['model_state_dict']
ckpt = {k:v for k,v in ckpt.items() if 'gravity' not in k}
transition_model_state_dict = self.transition_model.state_dict()
transition_model_state_dict.update(ckpt)
self.transition_model.load_state_dict(transition_model_state_dict, strict=True)
self.dataset = ParticleDataset(data_path=self.options.TEST.datapath,
data_type=self.options.TEST.datatype,
start=self.options.TEST.start_index,
end=self.options.TEST.end_index,
random_rot=False, window=2)
self.dataset_length = len(self.dataset)
self.fluid_erros = FluidErrors()
self.cliped_fluid_erros = FluidErrors()
self.init_box_boundary()
def init_box_boundary(self):
particle_radius = 0.025
self.x_bound = [1-particle_radius, -1+particle_radius]
self.y_bound = [1-particle_radius, -1+particle_radius]
self.z_bound = [2.4552-particle_radius, -1+particle_radius]
def strict_clip_particles(self, pos):
assert len(pos.shape) == 2
clipped_x = torch.clamp(pos[:, 0], max=self.x_bound[0], min=self.x_bound[1])
clipped_y = torch.clamp(pos[:, 1], max=self.y_bound[0], min=self.y_bound[1])
clipped_z = torch.clamp(pos[:, 2], max=self.z_bound[0], min=self.z_bound[1])
clipped_pos = torch.stack((clipped_x, clipped_y, clipped_z), dim=1)
return clipped_pos
def seed_everything(self, seed):
"""
ensure reproduction
"""
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(seed)
print('---> seed has been set')
def eval(self, save_obj=False):
print(self.options.expname)
# self.transition_model.eval()
dist_pred2gt_all = []
vel_err_all = []
cham_dist_all = []
cliped_dist_pred2gt_all = []
cliped_cham_dist_all = []
with torch.no_grad():
for data_idx in tqdm(range(self.dataset_length), total=self.dataset_length, desc='Eval:'):
data = self.dataset[data_idx]
data = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k,v in data.items()}
box = data['box']
box_normals = data['box_normals']
gt_pos = data['particles_pos_1']
gt_vel = data['particles_vel_1']
if data_idx == 0:
self.pos_for_next_step, self.vel_for_next_step = data['particles_pos_0'],data['particles_vel_0']
pred_pos, pred_vel, num_fluid_nn = self.transition_model(self.pos_for_next_step, self.vel_for_next_step, box, box_normals)
self.pos_for_next_step, self.vel_for_next_step = pred_pos.clone().detach(),pred_vel.clone().detach()
# calculate pred2gt distance
dist_pred2gt = self.fluid_erros.cal_errors(pred_pos.cpu().numpy(), gt_pos.cpu().numpy(), data_idx+1)
dist_pred2gt_all.append(dist_pred2gt)
# calculate pred2gt distance
cliped_dist_pred2gt = self.cliped_fluid_erros.cal_errors(self.strict_clip_particles(pred_pos).cpu().numpy(), self.strict_clip_particles(gt_pos).cpu().numpy(), data_idx+1)
cliped_dist_pred2gt_all.append(cliped_dist_pred2gt)
if not os.path.exists(osp.join(self.exppath, 'clip')):
os.makedirs(osp.join(self.exppath, 'clip'))
if self.options.TEST.save_obj:
particle_name = osp.join(self.exppath, f'pred_{data_idx+1}.obj')
with open(particle_name, 'w') as fp:
record2obj(pred_pos, fp, color=[255, 0, 0]) # red
particle_name = osp.join(self.exppath, f'gt_{data_idx+1}.obj')
with open(particle_name, 'w') as fp:
record2obj(gt_pos, fp, color=[3, 168, 158])
# cliped
particle_name = osp.join(self.exppath, 'clip', f'pred_{data_idx+1}.obj')
with open(particle_name, 'w') as fp:
record2obj(self.strict_clip_particles(pred_pos), fp, color=[255, 0, 0]) # red
particle_name = osp.join(self.exppath, 'clip', f'gt_{data_idx+1}.obj')
with open(particle_name, 'w') as fp:
record2obj(self.strict_clip_particles(gt_pos), fp, color=[3, 168, 158])
self.fluid_erros.save(osp.join(self.exppath, 'res.json'))
self.cliped_fluid_erros.save(osp.join(self.exppath, 'clip', 'res.json'))
print('\n----------------- trained 50 steps ------------------------')
print('Pred2GT:', np.mean(dist_pred2gt_all[0:49]))
print('Pred2GT-10:', np.mean(dist_pred2gt_all[:10]))
print('Pred2GT-end:', dist_pred2gt_all[48])
print('\n----------------- rollout 10 steps ------------------------')
print('Pred2GT:', np.mean(dist_pred2gt_all[-10:]))
print('Pred2GT-5:', np.mean(dist_pred2gt_all[-5]))
print('Pred2GT-end:', dist_pred2gt_all[-1])
# save
joblib.dump({'pred2gt': dist_pred2gt_all, 'cham_dist_all': cham_dist_all}, os.path.join(self.exppath, 'res.pt'))
# ---> clip
print('\n----------------- clipped trained 50 steps ------------------------')
print('Pred2GT:', np.mean(cliped_dist_pred2gt_all[:49]))
print('Pred2GT-10:', np.mean(cliped_dist_pred2gt_all[:10]))
print('Pred2GT-end:', cliped_dist_pred2gt_all[48])
print('\n----------------- rollout 10 steps ------------------------')
print('Pred2GT:', np.mean(cliped_dist_pred2gt_all[-10:]))
print('Pred2GT-5:', np.mean(cliped_dist_pred2gt_all[-5:]))
print('Pred2GT-end:', cliped_dist_pred2gt_all[-1])
# save
joblib.dump({'pred2gt': cliped_dist_pred2gt_all, 'cham_dist_all': cliped_cham_dist_all}, os.path.join(self.exppath, 'clip', 'res.pt'))
if __name__ == '__main__':
from configs import transmodel_config
cfg = transmodel_config()
evaluator = TransModelEvaluation(cfg)
evaluator.eval()