-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_signal_distance.py
227 lines (192 loc) · 8.69 KB
/
symbolic_signal_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
from sklearn.utils import Bunch
from weighted_levenshtein import lev
from sklearn.base import BaseEstimator
class SymbolicSignalDistance(BaseEstimator):
"""
Computes the distance between symbolic signals.
Inputs the symbolic signals and the look-up table which is the matrix of
pairwise distances between individual symbols.
Outputs the matrix of pairwise distances between symbolic signals.
Parameters
----------
distance : {'euclidean', 'lev'}, default='euclidean'
Distance type for going from the distance between pairwise individual
symbols (`lookup_table`) to the distance between pairwise symbolic
signals. Possible values:
- 'euclidean' : Euclidean distance type.
- 'lev' : general Levenshtein distance (a.k.a. general edit
distance), from the `weighted_levenshtein` Python library.
n_samples : int, default=100
Number of samples per (raw) input signal, which is the length of the
input signals, assumed to be the same for all the signals in the
same data set in `list_of_signals`.
weighted_bool : bool, default=True
Boolean deciding if we will use the computed `lookup_table` or not.
Possible values:
- False : the computed `lookup_table` will be ignored and the distance
between individual symbols will be of 1 everywhere.
- True : the distance between individual symbols will be given by the
computed `lookup_table`. If distance='lev', then the distance
between symbolic signals is the weighted Levenshtein distance.
"""
def __init__(
self,
distance: str = "euclidean",
n_samples: int = 100,
weighted_bool: bool = True,
) -> None:
# Unit tests on the parameters:
err_msg = f"Choose an existing distance type, not {distance}."
assert distance in ["euclidean", "lev"], err_msg
if distance == "euclidean":
err_msg = "Provide the number of samples per time series."
assert n_samples is not None, err_msg
# Initializing the parameters
self.distance = distance
self.n_samples = n_samples
self.weighted_bool = weighted_bool
def fit(self, b_transform_symbolization, *args, **kwargs):
self.list_of_symbolic_signals_train = (
b_transform_symbolization.list_of_symbolic_signals
)
if self.weighted_bool:
self.lookup_table_ = b_transform_symbolization.lookup_table
else:
self.lookup_table_ = np.ones(
b_transform_symbolization.lookup_table.shape
)
return self
def transform(self, b_transform_symbolization):
list_of_symbolic_signals_test = (
b_transform_symbolization.list_of_symbolic_signals
)
if self.distance == "euclidean":
distance_matrix = self.collection_dist(
list_of_test_signals=list_of_symbolic_signals_test,
list_of_train_signals=self.list_of_symbolic_signals_train,
metric=self.compute_euclidean,
lookup_table=self.lookup_table_,
)
return distance_matrix
elif self.distance == "lev":
# Transforming the costs:
b_transform_costs = self.transform_costs(self.lookup_table_)
# Computing the distance matrix:
distance_matrix = self.collection_dist(
list_of_test_signals=list_of_symbolic_signals_test,
list_of_train_signals=self.list_of_symbolic_signals_train,
metric=self.compute_weighted_lev,
insert_costs=b_transform_costs.insert_costs,
delete_costs=b_transform_costs.delete_costs,
substitute_costs=b_transform_costs.substitute_costs,
)
return distance_matrix
def compute_euclidean(self, symb_signal_1, symb_signal_2, lookup_table):
"""Compute the euclidean type distance between two symbolic signals.
The distance is normalized by the lengths of the symbolic signals.
"""
err_msg = (
"If the distance is `euclidean`, the lengths of the "
"symbolic signals must be the same. Otherwise, use `lev`."
)
word_length_1 = len(symb_signal_1)
word_length_2 = len(symb_signal_2)
assert word_length_1 == word_length_2, err_msg
sum_cells = 0
for (symbol_1, symbol_2) in zip(symb_signal_1, symb_signal_2):
sum_cells += (lookup_table[symbol_1][symbol_2]) ** 2
symb_signals_dist = np.sqrt(self.n_samples / word_length_1) * np.sqrt(
sum_cells
)
return symb_signals_dist
def compute_weighted_lev(
self,
symb_signal_1,
symb_signal_2,
insert_costs,
delete_costs,
substitute_costs,
):
"""Compute the general edit distance (a.k.a weighted Levenshtein
distance) between two symbolic signals.
The distance is not normalized by the lengths of the symbolic signals.
symb_signal_1 and symb_signal_2 are signals of integers (the labels of
the segment classes).
"""
# Avoid weird ASCII characters
n_symbols = len(self.lookup_table_)
assert n_symbols <= 26, "`n_symbols` should be inferior to 26!"
alphabet_signal_1 = [chr(i + ord("A")) for i in symb_signal_1]
alphabet_signal_2 = [chr(i + ord("A")) for i in symb_signal_2]
# Convert the list of strings / characters into long strings:
str_alphabet_signal_1 = "".join(alphabet_signal_1)
str_alphabet_signal_2 = "".join(alphabet_signal_2)
# Compute the weighted Levenshtein distance:
symb_signals_dist = lev(
str_alphabet_signal_1,
str_alphabet_signal_2,
insert_costs=insert_costs,
delete_costs=delete_costs,
substitute_costs=substitute_costs,
)
return symb_signals_dist
@staticmethod
def transform_costs(lookup_table):
"""Transform the substitute, insertion and deletion costs.
Computed from the look-up table and used for the weighted Levenshtein
distance.
Our symbols are the A, B, C, ... ASCII characters.
"""
# Integrate the lookup table into the substitute costs:
substitute_costs = np.ones((128, 128), dtype=np.float64)
n_symbols = lookup_table.shape[0]
substitute_costs[
ord("A"): ord("A") + n_symbols, ord("A"): ord("A") + n_symbols
] = lookup_table.astype(np.float64)
# Scale up the insert and delete costs:
lookup_table_max = lookup_table.max()
insert_costs = np.ones(128, dtype=np.float64) * lookup_table_max
delete_costs = np.ones(128, dtype=np.float64) * lookup_table_max
b_transform_costs = Bunch(
insert_costs=insert_costs,
delete_costs=delete_costs,
substitute_costs=substitute_costs,
)
return b_transform_costs
@staticmethod
def pairwise_dist(list_of_signals, metric, *args, **kwargs) -> np.ndarray:
"""Compute the pairwise distances defined by the function `metric`.
The arguments *args and **kwargs are passed to the metric function.
TODO: If not used by our class, remove this function.
"""
n_signals = len(list_of_signals)
distance_matrix = np.zeros((n_signals, n_signals), dtype=float)
for (i_row, signal_1) in enumerate(list_of_signals):
for (i_column, signal_2) in enumerate(
list_of_signals[i_row + 1:], start=i_row + 1
):
distance_matrix[i_row, i_column] = metric(
signal_1, signal_2, *args, **kwargs
)
distance_matrix += distance_matrix.T
return distance_matrix
@staticmethod
def collection_dist(
list_of_test_signals, list_of_train_signals, metric, *args, **kwargs
) -> np.ndarray:
"""Compute distance between each pair of the two collections of inputs
defined by the function `metric`.
The arguments *args and **kwargs are passed to the metric function.
"""
n_test_signals = len(list_of_test_signals)
n_train_signals = len(list_of_train_signals)
distance_matrix = np.zeros(
(n_test_signals, n_train_signals), dtype=float
)
for (i_row, test_signal) in enumerate(list_of_test_signals):
for (i_column, train_signal) in enumerate(list_of_train_signals):
distance_matrix[i_row, i_column] = metric(
test_signal, train_signal, *args, **kwargs
)
return distance_matrix