-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlosses.py
25 lines (19 loc) · 1.05 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import tensorflow as tf
def create_loss(net, labels):
y = tf.exp(net) / tf.reduce_sum(tf.exp(net), axis=3, keepdims=True)
cross_entropy = -tf.reduce_mean(labels * tf.log(tf.clip_by_value(y, 0.001, 0.999)))
return cross_entropy
def create_loss_with_label_mask(net, labels, lamb):
bad, good, background = tf.unstack(labels, axis=3)
mask = lamb * tf.add(bad, good) + background * 0.1
attention_mask = tf.stack([mask, mask, mask], axis=3)
y = tf.exp(net) / tf.reduce_sum(tf.exp(net), axis=3, keepdims=True)
cross_entropy = -tf.reduce_mean(attention_mask * (labels * tf.log(tf.clip_by_value(y, 0.001, 0.999))))
return cross_entropy
def create_loss_without_background(net, labels):
bad, good, background = tf.unstack(labels, axis=3)
background = tf.zeros_like(background, dtype=tf.float32)
labels = tf.stack([bad, good, background], axis=3)
y = tf.exp(net) / tf.reduce_sum(tf.exp(net), axis=3, keepdims=True)
cross_entropy = -tf.reduce_mean(labels * tf.log(tf.clip_by_value(y, 0.001, 0.999)))
return cross_entropy