-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
290 lines (246 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# coding: utf-8
import argparse
import os
from pathlib import Path
import torch
import numpy as np
import torch.nn as nn
from torch.nn.utils import clip_grad_value_
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
# imports for hessian
from pyhessian import hessian
from PyHessian.density_plot import get_esd_plot
# imports for visualization
import copy
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['figure.figsize'] = [18, 12]
import loss_landscapes
import loss_landscapes.metrics
import model
from seq_dataset import SeqDataset
parser = argparse.ArgumentParser(description='Shape of Minima of Deep Learning Architectures for '
'Sequence Modelling')
parser.add_argument('--model', type=str, default='Transformer',
help='type of recurrent net (STM, GRU, Transformer)')
parser.add_argument('--emsize', type=int, default=1,
help='size of input embeddings')
parser.add_argument('--nhid', type=int, default=8,
help='Hidden embedding size')
parser.add_argument('--nlayers', type=int, default=1,
help='number of layers')
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=10,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=10, metavar='N',
help='batch size')
parser.add_argument('--nout', type=int, default=1,
help='number of outputs')
parser.add_argument('--dropout', type=float, default=0.1,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=160, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='output',
help='Output path')
parser.add_argument('--model_path', type=str, default=None,
help='path to load the model')
parser.add_argument('--data_dir', type=str, default="data/sequence_classification/varied_length",
help='directory with the dataset')
parser.add_argument('--nhead', type=int, default=1,
help='the number of heads in the encoder/decoder of the transformer model')
parser.add_argument('--dry-run', action='store_true',
help='verify the code and the model')
parser.add_argument('--all_metrics_on_training_set', action='store_true',
help='Whether to produce all metrics not only on the test set, but also on'
'training set.')
args = parser.parse_args()
Path(args.save).mkdir(parents=True, exist_ok=True)
args.task = args.data_dir.split("/")[1]
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda" if args.cuda else "cpu")
###############################################################################
# Load data
###############################################################################
dataset_train = SeqDataset(args.data_dir, "train")
dataset_val = SeqDataset(args.data_dir, "val")
dataset_test = SeqDataset(args.data_dir, "test")
dataloader_train = DataLoader(dataset_train,
shuffle=True,
collate_fn=dataset_train.collate_fn,
batch_size=args.batch_size)
dataloader_val = DataLoader(dataset_val,
shuffle=False,
collate_fn=dataset_val.collate_fn,
batch_size=args.batch_size)
dataloader_test = DataLoader(dataset_test,
shuffle=False,
collate_fn=dataset_test.collate_fn,
batch_size=args.batch_size)
if args.model == 'Transformer':
model = model.TransformerModel(args.emsize, args.nhead, args.nhid, args.nlayers, args.task,
args.dropout).to(device)
else:
model = model.RNNModel(args.model, args.emsize, args.nout, args.nhid, args.nlayers, args.task,
args.dropout).to(device)
# for loss visualization
model_initial = copy.deepcopy(model)
print(f"{model.count_parameters()} parameters")
if args.model_path is not None:
model = torch.load(args.model_path)
if args.task == "sequence_learning":
criterion = nn.MSELoss()
if args.task == "sequence_classification":
criterion = nn.BCELoss()
############################## #################################################
# Training code
###############################################################################
def evaluate(dataloader):
"""
Perform model evaluation, normally on the validation set during training.
Returns loss per sample that in case of sequence learning is actually the square root of the
loss per sample - for readability since mean squared error is used to compute the loss.
Additionally accuracy is returned for sequence classification.
"""
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
total_samples = 0
total_correct = 0
with torch.no_grad():
for data, targets, masks in tqdm(dataloader, desc="Evaluating"):
total_samples += targets.shape[0]
if args.model == 'Transformer':
output = model(data, masks)
targets = targets
else:
output = model(data, masks)
if args.task == "sequence_classification":
total_correct += (((output >= 0.5) == targets.bool()).sum()).item()
total_loss += criterion(output, targets).item()
model.train()
loss_per_sample = total_loss / len(dataloader) / args.batch_size
total_accuracy = None
if args.task == "sequence_learning":
loss_per_sample = np.sqrt(loss_per_sample)
elif args.task == "sequence_classification":
total_accuracy = total_correct / total_samples
return loss_per_sample, total_accuracy
def hessian_computation(model_final, criterion, loader, save_dir, split):
"""
Compute and save top hessian eigenvalue, hessian trace and the ESD plot.
"""
hessian_comp = hessian(model_final,
criterion,
dataloader=loader,
cuda=False)
top_eigenvalues, _ = hessian_comp.eigenvalues()
trace = np.mean(hessian_comp.trace())
np.save(os.path.join(save_dir, f"hessian_{split}.npy"), np.array([top_eigenvalues[0], trace]))
density_eigen, density_weight = hessian_comp.density()
get_esd_plot(density_eigen, density_weight, save_dir, split)
def loss_landscape_viz(model_initial, model_final, criterion, loader_train, loader_test, save_dir):
"""
Save three loss landscape plots. One is the interpolation between the initial set of weights
and the final set of weights, another one is contour plot and the third one is a 3d plot
visualizing the same thing as the contour plot. See report for the explanation of the
visualization methods.
"""
STEPS = 100
MAX_DIST = 100
CONTOUR_LEVELS = 50
x, y, mask = iter(loader_train).__next__()
metric = loss_landscapes.metrics.Loss(criterion, x, y, mask)
x, y, mask = iter(loader_test).__next__()
metric_test = loss_landscapes.metrics.Loss(criterion, x, y, mask)
# interpolation
loss_data = loss_landscapes.linear_interpolation(model_initial, model_final, metric, STEPS,
deepcopy_model=True)
loss_data_test = loss_landscapes.linear_interpolation(model_initial, model_final, metric_test,
STEPS, deepcopy_model=True)
plt.plot([1 / STEPS * i for i in range(STEPS)], loss_data, label="train")
plt.plot([1 / STEPS * i for i in range(STEPS)], loss_data_test, label="test")
plt.xlabel('Interpolation Coefficient')
plt.title("Linear interpolation of loss")
plt.ylabel('Loss')
plt.legend()
plt.savefig(os.path.join(save_dir, "loss_interpolation.pdf"))
STEPS = 50
def draw_contour_plots(metric_contour, split):
# contour
plt.figure()
loss_data_fin = loss_landscapes.random_plane(model_final, metric_contour, MAX_DIST, STEPS,
normalization='layer', deepcopy_model=True)
plt.contour(loss_data_fin, levels=CONTOUR_LEVELS)
plt.title('Loss Contours around Trained Model')
plt.savefig(os.path.join(save_dir, f"loss_contour_around_final_{split}.pdf"))
# 3d landscape
plt.figure()
ax = plt.axes(projection='3d')
X = np.array([[j for j in range(STEPS)] for i in range(STEPS)])
Y = np.array([[i for _ in range(STEPS)] for i in range(STEPS)])
ax.plot_surface(X, Y, loss_data_fin, rstride=1, cstride=1, cmap='viridis', edgecolor='none')
ax.set_title('Surface Plot of Loss Landscape')
plt.savefig(os.path.join(save_dir, f"loss_3d_around_final_{split}.pdf"))
if args.all_metrics_on_training_set:
draw_contour_plots(metric, "train")
draw_contour_plots(metric_test, "test")
return loss_data_test
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
best_val_loss = None
train_iterator = trange(int(args.epochs), desc="Epoch")
optimizer = AdamW(model.parameters(), lr=args.lr)
for e, _ in enumerate(train_iterator):
epoch_iterator = tqdm(dataloader_train)
for step, batch in enumerate(epoch_iterator):
data, targets, masks = batch
model.zero_grad()
if args.model == 'Transformer':
output = model(data, masks)
targets = targets
else:
output = model(data, masks)
loss = criterion(output, targets)
loss.backward()
clip_grad_value_(model.parameters(), args.clip)
optimizer.step()
total_loss += loss.item()
if (step % args.log_interval == 0 and step > 0) or (
e == int(args.epochs) - 1 and step == len(epoch_iterator) - 1):
val_loss, val_accuracy = evaluate(dataloader_val)
if not best_val_loss or val_loss < best_val_loss:
with open(os.path.join(args.save, "model.pt"), 'wb') as f:
torch.save(model, f)
best_val_loss = val_loss
if args.task == "sequence_learning":
epoch_iterator.set_description(f"Average error: {val_loss}")
elif args.task == "sequence_classification":
print(f"Average loss: {val_loss}")
epoch_iterator.set_description(f"Accuracy: {val_accuracy}")
if args.dry_run:
break
return model
best_val_loss = None
final_model = train()
loss_test = loss_landscape_viz(model_initial, final_model, criterion, dataloader_train,
dataloader_test, args.save)
# save the loss of the trained model on the test set
np.save(os.path.join(args.save, "test_loss.npy"), loss_test[-1])
hessian_computation(final_model, criterion, dataloader_test, args.save, "test")
if args.all_metrics_on_training_set:
hessian_computation(final_model, criterion, dataloader_train, args.save, "train")