-
Notifications
You must be signed in to change notification settings - Fork 4
/
Four_Rashba.nb
2753 lines (2745 loc) · 150 KB
/
Four_Rashba.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 153018, 2744]
NotebookOptionsPosition[ 152682, 2727]
NotebookOutlinePosition[ 153038, 2743]
CellTagsIndexPosition[ 152995, 2740]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"2",
SqrtBox["2"]}]}], ")"}], "\[Pi]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["2"]]}], ")"}], "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"t1_", ",", "t2_", ",", "t4_", ",", "k1_", ",", "k2_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "t1", ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",", "t1", ",", "0",
",",
RowBox[{
RowBox[{"-", "t4"}], "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t1", ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",", "t1", ",", "0", ",",
"t1", ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ",", "t1", ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
"t1", ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",", "t1"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}], ",",
"t1", ",", "0", ",", "t1", ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",", "t1", ",", "0", ",",
"t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
"t1", ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ",", "t1", ",", "0"}],
"}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "0.8"}], ",",
RowBox[{"t2", "=", "1.0"}], ",",
RowBox[{"t4", "=", "0.8"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Re", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",", "t4", ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "0", ",", "1", ",", "2"}], "}"}], ",",
"None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "\[CapitalChi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "\[CapitalMu]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "\[CapitalSigma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "M"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<k\>\"", ",", "\"\<Energy(a.u.)\>\""}], "}"}]}]}], "]"}]}],
"]"}]}], "Input",
CellChangeTimes->{
3.6653192576437798`*^9, {3.6653201514726057`*^9, 3.665320158136545*^9}, {
3.665320505286292*^9, 3.665320507393359*^9}, {3.665320561242758*^9,
3.665320710329031*^9}, {3.665320745091723*^9, 3.66532086651654*^9}, {
3.665337665198621*^9, 3.665338397004168*^9}, {3.6653384272376127`*^9,
3.665338428826357*^9}, 3.665338506552129*^9, {3.665338541589383*^9,
3.665338543930698*^9}, 3.665338585743226*^9, {3.665338670571362*^9,
3.665338671284482*^9}, {3.665338985423087*^9, 3.665339047980958*^9}, {
3.665339277557065*^9, 3.6653393496619663`*^9}, {3.6653395765800123`*^9,
3.665339660697603*^9}, {3.668327929230729*^9, 3.6683279855682783`*^9}, {
3.6683295491562233`*^9, 3.668329628139017*^9}, {3.668329727118627*^9,
3.668329793742626*^9}, {3.6683301298653793`*^9, 3.668330130263165*^9}, {
3.668330169729175*^9, 3.6683302294722633`*^9}, {3.668330448967908*^9,
3.668330584376133*^9}, {3.6683306203779497`*^9, 3.6683306207451677`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVmnc8Vl8cx41n3MdjPii0iChklUrDOSmjhUgJ2aSMJEpRSJkJFRqSlpGM
rJ+VDiGULSNkz+zxmPE7/dXr/Xpu9557zvf7+X4+dcUsr+jZsLGwsAyys7D8
+/PlHUuKorWH6mD++c9r42QUYzS6/5zoeSD4vTv1zgwZtZ4KchEVvQR8GuW1
lufJ6IbmeW6y6E1QUZVoOsZCQRol0GR+SyD4qf2gMZNBQcl3d/tObnkGHk8c
869WpqBui5R1Y1sSwYD9x9sbblGQx2l78z9bcoFo9ePx10sUtOq7R7jzQS6I
8365o3KVgryzWevrF3PBARPntXE2Krq34emRvIY8IFBw55ocnYoe9pdIBvoX
AEun9xr3NlBR7M3NY5ITX4Adi/NM4AEq6q0dOqho9hU4q3dumHKnIonL2sJJ
EV9Bmu9T6URPKrJlz5yT+PEVlH8ti77gTUVDyl4pQiolYOe3F+/z/alo9Lmg
KAt/KUh6+lz0ZCQVMa3V2GvKysBhwWt3P6dTEW3xRYWDXCX4mJRU0zJERfv8
W28dt6gEfGFKQb1/qMhOcL3s9ieVYNv65qWRcSoqU3z0sHexEjTvHliamMXv
czlA36j0O3gwFHChnoVALO2uHZomVUCEK218fj2BPDrj3PnUawHHpsZP6AiB
HsWpn/Y2rQV3tyk/M9cg0AfHvh0TN2qBgGH2pr9aBPq1LNb240MtCBu/siyj
TaB9Qi8PBfDWgcjuW/PmhgRi6j5mW2urA9SD62ykHAh0tdjrwahLA4iJbGPd
Gk6gBb4nyW3BDUD/c7HFsccEumORUF35rgGYOfY6OUYQ6AFLHW9iUwPIKaKG
Jj0jUILq1gib/Y3ApfT1r7XXBOrKK3n5m/UnGCm6e5hIJ9BFjtbCKpGf4IcN
t9pSBoHGz491Fuz6Cc7uVhseyiLQyoLg1hc2P0HOBmnpglwCCe29GHeu4ic4
f4dpv7+IQLoZtNTasCbgTDZ+G1FDoGa2zbVfEpsA64fWvtN1BDLVU5pKKW4C
Xr4fv3E0EMhhymhXyGwTiI8Rd3ZpIlCA/Mf/jhk2g+6Ll48KdxDoS5I2Kt7S
AqqdCwtLhgkk9+5xXWZKK7ieans+nIWGBJ4qzKOKVrCQbfPiLysNLQdXbazq
w7yuscOGnYbKr1Ht+kV+gZRLKlbSFBqyPOKxKuj/C2hl89v70mkoosdS5oZZ
GxjX1DnhJkhDnk1rur632kDT+l3er9fh6yujr4dGtIGjchszKtbTkFx6U1H8
9zawZyKSwS2C7+9z3LBlbzvgW/6YZbuZhlZEle6r8HaAUxWk2+ckaahHoOaD
ukwHcH+9OfCIFA1VEA61pzU6gKSl5iOZ7TQUOfl+w2XPDmDWkftiYgcNKSDh
9OdDHSDFfkuw5k4aWpeZ3RzH/huE6b714pejob/x+n/TN/8GH5SPXG3DXBka
ovX9zG9wTXHhhJkCDVmZsXYuo9/A1tqxa88uGjquH0Mi2n8Dj5m/hT2YFTQP
SAvM/wYnNvG9CNqN1yvn5ia7sxO8neI8Wa2M17M6RL/wrBPUdH57vG0f3o/p
+4qXMjtBcV2t+SfMVgNbz7nVdIIdCRtkVVRoSOiiXF0ZWxfY2jD5+eB+GurX
ttvYua8LUNL31/MfxOdT5iBxR70LjC/U+7pjVjt0VXaTXhegh8/mtGKOlbl1
0Ni+C/A1nE8JP0RDNW/uHF260QUctvY6DWFeFfY9+exeF3jP5ZNxQJWGTIgH
Js0vu8AWy/CKZszBXmHW1z90gTNZp1+IAhrKYz5xEPyvC8i6F0/ZYB5yfOaa
+bULlOziqorHvL7/pad+bRcQvWmycwCzhsmbe9PtXaC/q40hBmnItSHuQfhw
FzhKz7ltiLm+KDW6hq0b3Dil2leAmVUl850TTzdQqtToGsaskJbzkWtjN5Bq
sLPkP0xDplKfMz9u7wZWsk2XVTCHxBQVnFDuBimxRYvGmAsEy0pGDneDfFYz
Hg/MIw8qfwRqd4MMqd6kSMzCpJrG7cbdwGHKtyYFs5ZHQ/u3i91g3VH3W18x
35hu7rN17QYn6QsfGzHHXWofJft0g8l9By/2YG7s6pp9F9IN+ErvJI5iZjfs
XznyvBvMJi9dm8GsVDNM6o3rBr3zf8qYmM01xjnvZnSDHcmhb/5x6OdpATHU
DUi/xan/ri/cPb8R/egG8bGDs38wjyUtS5i1doMV3g0O3Zg3irPsXO3vBs26
aw4NmI8/Jym/nO4GX/2b5osw3+SjHTq41g3me3o5kzEnBHCpt9F7gH2E/ccn
mJvW+E7dEuoB75vTm9wxk2+sMxDe1gMGB9eCz2PePS5yIUexB0zQnv/Yg9nK
ZovNOdUeIOFf8ZQX86N2cUfm8R5wPaV5cgCfB9Lf7hZxDt+/kftnLuaJStnb
u617AId+nnog5s1qivcbnHvAeKDkEQPMJ3OVQ1xu9wDwO7ZqE+YP8aov0yJ7
QEjoUtA7XB+tm4+813nbAz7U3yy0xExEaiaPp/YArzUN702Ybe7pfpat6AE7
RdelBeB6fLJ8pvT7zx4gL4U2q2AudjlfdbmnB8ipEpsGcD2LWlh2JCz3AC3W
6gplzDottv2aRC8IGF92b8H9cEfHfmxAoBfwOG3PvYG5/ZDrXwm5XiA/ODSW
dICGokT8Nr027wUrl3ft+oP7j9lbHa/t1AvSLOsU7DCfSV6vtOLRC/bWPdnR
jfuVARM1zkX1gush97m/7aWhBzY/rnBV94I94gqZlrjfR+QEl/LaesG5B3zP
vmA9OLZw4Z7dcC/YtlvhthBmSvDE06+kPuAncFK9UImGvNMYxTcP9IGlmxf6
WuVp6PdN45NSx/qAz8k79eswHzryrqnxbB9QX9Uu0cH6tPRT+Y+8Sx/Yanom
K0sW99eyocBAQh+ofxbScRrrnZ3GK1u9df3gnoN57XcxGirjGZpcE+8HWwwN
1SpEaWhbq4JHsmI/oGfNFxVvwXpqXxxKnOoHAcvto4mbsB6E9+cU+vYDj5PW
pGPCNKTbLkOXmeoHuzIOtVTy0FDKe9eIltV+EM1+xj2Qm4a4rnze4sc5AAwk
PBSPcmH9ZNXZ3S01AMp1adPJHDR0VMrlQpTpADgp1VSkR6YhFZecVPYfAyC6
8JF2zyKBatcOmF5tHQDqx436Ly0QyDbkC2fnwAAoKMgoHWPieZ9QdimPdRCE
JZ+3HZkh0MjvRvGrewdBur+j6n9jBIo+MRX1+80gaDFSpMR2EWhVQto79+YQ
IF5kbc38SqAn6clyUv5D4M1x2adleJ5KQ8WOJ0+GwLm4n9d+fiHQWeN9+51T
h8DzT1kWQ/kESg3XmJXsHwJXIzJ29eJ5bb5qafdEdxjc9f8ZsfMtgb42v9C9
IjUCnirw/Njohe9vaTA7t2sEzBgdmB7wxOsf437qCUfAxQNGAim3CMTBfrcz
8PwIqLfU0N11Hc9zOTund8EjQKN+oUjYkUC/7+1+0DoxAm4L/7p0zohAS4pV
347k/AEG2vbMaCUC/Sjws68s+QMWyOceEgoEitGEPKfr/oDJwzpHru4k0OEL
GWdNR/6AZK4uYv92PO8DnvW7bxwFCUXSWxM3EWhdpw17ivcoOF4gHbpKJZDi
g1VVoWNjwCbnXNLDX1SkdGnFOvnsGLjmNZhn3kxFuzWWgtSsx4CkK/mxfCMV
7WFhNjl4jQHUHfr2axUVHXQdcyrKGgPDCw2upYiKtEzaYy5vHQf7w/+eVYyj
ouMqv0rW5MeB0oRSfu0bKjqxrmXkyaFx0Lrsx+74ioq0axv2fDEcBx/ZvmhG
P6WiM0e/V/OHjoPPcaZ1P4OoyFw2b7VgeRwYb68IyHaiIktajoQebQKMNS7Q
t9lT8bzMOj64bgIUKCuEh13E/jX2UySf0gTo2BmQaGpORQ4CiXK2dhNA+qnc
sebTVOQ0FXdm2W0CuAW28ctpU9GV6ne3wnwngJn4zUmf41TkEhBblheD77+Y
PCh6hIqu2cSM6nycANrTZhQHQEWuatGM/twJMCSwD2RiP31jJcqU5+cEWL8l
lXpwNxW5t0bce9czAQaPer3wUKCiW9mPP6hMTgDZjS2nc2SpyONxeG313wng
eaNVdno7FanmaC5/Ik+C01aJB/bLUNGXOI2HnpyToHWpaucHOSqCEepimvyT
YGTzNZH1SlR02OWIZrvoJDhzaKBtcB8VFZur/YqTmgSWdlzJJw5SkZrOYcer
cpNgk8fFqx/xeo/KgseUg5NAU8Drh7UGFWkO7O9UODcJLvgcfp6mj/eroXHU
/8Ik8Pmu2ff1LPbfyGnpt9UkIEk9uNl4noqKnr8RDHGeBELL273HzKjogA7H
yeHASeCR4tO0ivdfPqc153XBJJCkn7j20peK1ge5P2JsnQKdTcYiRWm4Xm4w
Yi9tnwKq1rOyHhn4fK0/JiO5KRCQcN9cKZuKwlW7yp0OTIH8tqRtT/OpiD6j
uVZ5Zgqc+02lHC6jojXj9Q6+/lMglDuUn9pGRYM7s9VnR6dAh5nrKRM2Am29
7WgjMzMFaGomZh9JBDL5IXHfcnEKWEZmBC9SsJ5cflxSS54GhGKGfDCdQHnx
zkeSN0+DsKZjgcEC2L+LyRy21Z0G2/6qJq5tw/0gGHuwJWMa3Da5QU/FecLB
+pwJT940+P1J/VEszhNxGdyeGmganLEpFQw9TiARvdv5mT+mgWOOPY8Vzhek
UKP94f3TwMjrSdaAAYGaCMF9x9fPAKPPPQwTa5xfVgJ3FdyaAUfGs90W7xCo
2tXqyS2fGdD+LaPmgzeBRMcOzu0LmAE353K9DO8SqKRjIjsrYgY83Sb/O+E+
gTi/GOxPTZsBovqSHpse4P73ETv8ZmAGZEzscTR4SqDJxaXX5mMzYPZ6Tv53
nEfUXBrZtszOAMX7InqqLwg0aOlf8oJ1FphwSekLxRBI4eiYZsTGWZBnBUJf
YT0rouRqB+jNgtdLPfuXkgkk4PUoVeP8LCh3aH6/OxXr2bw9L9l8FpQuDZ6w
T8N6NrS53sdxFiBDE40qnG/0Ku4ZeATMAtmhpk6r/wj07rBptkroLBB1HeT2
zsF5K3fv+oUIfL9zytee4nzz4sNIi+vbWWAcnNHyGettX7CuiVPhLFATSGFv
w3q8hyT9WbZ0FjjrCVS0IKxnnuyb/3yfBTXf5QvrsX7vdMzuvNg6C5wW2nbn
Y32/rr3RymJ2FqhsTDps+o1AVL6hS2ek50ALeHp8tAo/399E/ZXCHEjwlVp5
VU2ggdVa0ZE9c8DIcUVPF+epstHcZq8jc4DIDB+PqyWQX3mwepLJHDCZN66V
wXnqOmARY1rOgdij7K9KMNtmu67AS3PAxxLwGDUSSOPdhYwmtznQlZ9Wf+sn
gSje8mJsoXOA+8vx1sfN+PnMtysnI+YAydo6ga8FP99RqCXqxRwwhW8EH2Au
M2YN3ZkwB3IM+8uvtxIou97tsnvKHLh+VYR7EHPcsRH1r5lzYORWw4T+L7y+
vQ0rhkVzoHz9QX/xNry+FM2Wt9/mgLGf+EE/zLbbCjLGq+ZA1YvV4H7MGvzv
L9/7NQdmHTiWn7Xj/Q0S1qjpmgMCLB7CE5glWR+KiQzOgdYh0zqI8yFl4npL
6swcIFvROX9hZtr8yVhanAPOZRseiv3G6283C1VnYQIXcfkEG8xN+o2XwyhM
wN7953wc5rJKLY02TibQsFl804s5+/BnMUl+JrgkyOK7qRO/T47iX2dhJvhi
kLioj9kvTiSTIskE7vwPE7MxX98UGnpalgmSz4j19GC2fcJuH63EBJnJlDQ6
nu9n6e4ag/uYYO32KEMRs8bdUTElwASExF0Ofcx7Fs3/eqozweG/NyKvYpZ0
/tny7QQT7LD1yn6Aed3gsUyGHhMcyjt++R1mimlh6AVDJiCfCfmUg5nZqGSf
YMoEfCHLwRWYB07Ea8xYMwFb4fHFJsxNxRu2qtozQaCq4mIX5jKVsL8BV5nA
w8Y2eBBzdhqpteEGE5QEvEkdwRwndTNz8x0muP83xuYfR8aMhV66xwRcQuuS
BzD7CVraZwYxQa/M1/udmK8/aNJYC2OC7mDLiUbMtuwnth6PYgL5oE/DZf/e
/9aXv09eMoGOu5Nr1r/3n9rV2vkWv2+8Yeg//7PHLiFT+gMTuF5U2B/w7/07
N4a5pTHBOPGfq8O/9z8bbo+ymUC9LUX1FGZyFVmT/pkJKne2RUlj5nSMtur4
ygSvF9dvY8UswLXLO7WSCZzTWuMa8HlsTK6I9qljghSW5o1vMEucMs/Vb2GC
Y0vf/Bwwy44xf27rZIJcbts+Jcy7Q0Km5/uZYBefg/IcroejVXky0TNMYLPu
TZoj5pOOp7WclpjAOFH7lzjmM1xD1pB1Hmw6YcL8ievP6pRgTB/3PKgQfEuS
w3x5LCkvW3AedPVYMRtw/bqEqDUHbJwHvtSIVjfMd6uu8O6UngcCPbbXknH9
BzlSdq4pYD77fMcRzI+4Xh6r2zsP1GKsahtxP705VXnXTX0eJLqMjv/B/VZU
JTH32Xwe+L+KvDyM+7fcMZ8v7OI8IDnJxZpiruXSk7N0mgevO4ZLapoI1HXK
6yLFcx7M8uxse4/7n6W6tVU7ah4w1Tv2iGG9IJycmaIx84Dyy7vbrZ5AvNxU
/pl384DVVv5WWR3Wf+3dJ6PS54HltwNuxlh/QPXDws6qefDMRj30DNYvDadt
bZ8a58G2iMvxAT8IpM1dMO/bhq8/1P4x5zuBTLWHFbYPzwO29+ZenJUEulN9
5K0zaQEEq5sd9i3D9eX064safQHoFOkUR5YS6CH31XYBxgIoEN2hEFdCoJfa
MYK5WxaAyphXfU4xgQqqF/xZDywAK+YVxeRCAi1XJzs8uroAPJkJRvVZBNpc
Z/HiqPsC0GjeuO9DJp43DYKVzDsLQEonbPsd7JeDmm9LGT9YAMOWOWoinwgk
1HWqRzx+AYQYS5uKf8T1OTV2Lqt9ASwKkjRvviaQ0cxrv4u9C6DuIJ8ZI5ZA
t+cMsoRHFkDShW/B8XhelSx+ZtyZXwB8byvEy/A802d7WKXBWATafel6jREE
cuaXO9KiuQgq26V+7g7Eflyw52qQ9iJQ8+8+GepPoP/WR8YeNFgEfzMM2vvx
PF3dsPo31nIRHLlifcQfz9sQieqcS7cXwUTITpUXHgT6oOwkt5y+CNap/2Ih
sD/vP5civHnzEvBs5TswfxL3s+HfYhOJJfDwzt3tS9gP2J0/6fBCegkMEuK5
i9gvjBiNFArtXQL010al40fxfL4gac2vuwRG7XMepx0k0IpVTApxdwnwXhgw
eSxDIH7nh0dm+pfAK/kngS3YvzQ6d4wqji4BSVrEG2fsbyKvykY6Ty+BLXKX
HMjY/whdqxwaW10Ct2ueCmz7S0Wbr1MeDq1fBi9Ei0sPzlCRtOedlo5jy+CJ
kfa26t/YPwY4OZYnL4OokDWmJ/ZjIumd5x5mLgNx9TqJK9ivzbbpqp3JXwb5
1Xn3LiRTUZz8rvVd5ctgb7DDb7l4KuJsnkfzvctgJX2c8e45FTVt8xGQElkB
YdJ6Bq3eVGT/9XH+fb8V4MyfbXcd++mI1RzaEbO/YP2IGOfnegrilCp1irD5
C7SMZI4RNRR0T6euYdD+L7DpV7ql+52CXGKHXz5w/wvyBKM+N3+lIG01EaWm
8L+gjKdtoiiTgih+HkaXSv6ChA2ThyiRFOTOpZoUumMV5J+d5D5/loImlI/z
9sivgqiXX1+r61GQrelZt917VsFSVud5eW0KOpPqBFrVVgF3ocjhJXUKUjz9
qmGrySqYYkna7KRMQSNPWFayHuL7yQZ9ruGnIOONX0+2z6wCDv2dZQHVZDTi
ODWdtbQKbrGGKnypICP3L1uehbKuAa1ip9DpEjKKtPTsV+NZAy5PJPbq5pNR
fYLynUTpNcDa991/MJ6MjisnpF63WAOi324IBXqTUatfk4Gu3RqQzmg6E+ZB
RnYtpJUdV9aA72tSwZPrZOTnYaHV4bkGmidrhSMcyKi4SKT7yNM14Cpee8fV
kIxO8x/z3/RqDTzXXvW00SejLusbO+ffrwEPub2l+tpktEptvPkhYw2IJ+od
3X6UjPZrhzD4atYA2N927ZM8GVW8ys8Z+bkGgrw+7QuRJiPDqWHTkvY1kPSC
fNl2GxkNqAmRY3rXQOgNG85DomTk9kQj6cYIfr9BRwm+DWREGnA9fXpqDewc
rczuESSjR3vfzksvrIFvc3vLP/GSkVhg3UvS2hrwl/K+cIeO7z+2JjbBxgKH
PA7r7eYhI9F16+eMKSxwq0TmvI0AGQ2qypWX01jgfVLEpghhMroeZuL0hpcF
Uk58av4jTkZPduXmGWxmgVaE8L1b+8jIxKQ2pFiMBXq66iVFHSIj8fuD5vLb
WKBLZYxcuhoZpTcJUmmyLHBUXW9f50kyqr3pol+gwgJX+g/1ClmQESeSGd1q
wAJHDnkLUwPJqOfZ6XIvQxZor6Eu3B1CRv9du/Gu3ZgF1nFwnc55REaWUl9N
Ii1Z4J00DWPTaPz7Q6MqmjMLfOs9fCcgFf9+ITBlMogFPnaUU9f7SUY5SwPO
hYgF3hRnjYrfTEE2ym/mzsuywpbYkPLqeAoKeijIc1ueFVpx3H3yIomCUgYD
tscqscKS+2yONqkUxHx2xXhgHyuUVeJQncymoIDVg0Uu6qzwwmSESk8pBX34
1vwg2JQVApEE+z29FDR+nkvicxgrPBdkuxS5gYoYGd6Huh6zQrFDF5rZtuA8
xjl7lj2KFe7odn5mv5WKvAp/BR57yQpvuaeW79pBRbziCRM/E1mhxEud7Jg9
VKQ0qpY/XswKrVVz/3To4rx7x11PdI4VKhQZbFq+S0XbRz05/RdYIXnTuyo1
PypqOe9TNrbMCv3rzDL9Aqlon3LQ/nw2NtiwnybGHkZFC39ebD3Lywbz4tcZ
V0fjfHz+y3SwDBs0Syy6mZxFRXd2Ux7PW7DBUOZekYA+KpJ7w3HK1IYNuvAt
V54ZpKLfPDzUUjs2WNW+ErFphIrAn/Uej66wQXaPyhtvJ6iI5c0Oq5232WAM
tDzrvURFd3lO7bJ6ygZVNxb33eYh0P2Rxw3V1WzwqlJ4k+8eAt1r7q9crmOD
HB8KbiTtw1yyt3j7TzZ4hNz5umY/9g8xbWl329ggSdsulAvgeaon/nDPEBtc
s7hRYqaJ/VleulYMKzt0i5ZXu3COQG7xJPidxA6fLZYcPXWeQK5Pzu5doLLD
By2XKlWMsT9xWtqmx80OlcIjLhBmBLqyVY2dsoEd1i+8fe5hi+dHUN1nx93s
cH5VYWeeK4Eu3hDPer6XHYq+NDvoch37P2u3j9/2s8PPUSsVku4EslYVfiF2
mB3+vXTP7D6eVxbT5u4/T7HDsJCtjkJ4nhkZTSodusgOuW+qdkc8xP5KmieB
8zk7TM5n7xp9R6Dz5VcSdrxkh5Fxu2Z2xuH729YmaMSyQ/5GrTf28QTyfhOe
6B3HDo+VoIb2RAJliggkzabj5/931ScyBfs/unBK+3d2ODYbNm+L896OxJsp
i9XscGUq+8tVnPf2aP5KWVfPDu9RP229ifOeru+LVN0WzIssubdx3ru3vOlT
SR87bOexkTTFeW/0z9bMj3/ZoXvdbjZP7FcWA30zK1hIcLN7r5suznOU7X2Z
A+wk2DZmeE+sHPsl6/dZohwk6Dr539XcCuwX26X+e7KOBCU9jEMR9kcWtwL+
+yRMgo5V2r9uYv/kJDT8X/VGEhxksUTyOP8FnPmQQ4iTIM85KdNwnP8Kfsjm
ecqToF3Xlh4Z7M8qLofkPVMiwU9uf6mV9f/y/HhetjIJhnI+rrDGfm7yaGr+
5AF8/9GjomE4/0l8VvxsrUWCBzvDNhdiP6ho/OizzwkSdOCbkziM/aLq4vTn
GG0SXF0e/IYwGypnFracIcGehvneLJz/QpL3oJMWuIaabN1vYD8qab7dItma
BHVXX/IOYS5kiLBx25FgnLVK8hnsXydv/D1S40SCC8M2s2LY7wZKT/TJu5Ag
X6fpq7uYt3Z03Q9zI8EfhcE6nZjPqJV8O+1Jgl7RZugB9s9js1l26V4kmLbl
pk8HZr/4eBq/LwlGRiVpSWP/vcXo2YdrfiTIEr1r3TXMOZzBJxoD8f2EdUb+
w3z6i+fo7hASfKp3qHQB88hVp5CIMBL82K4ar/wvHzSfrjkbRYLP++75vMWc
FXjE+b/neH3Kp281YtY+qMwnFEOCYx7Q41++GByXTHd/TYJ5s8/u/csf3q+F
9FvfkWCfXFykDmbhMxyzKgkk+IAr9ZMz5nTKypPnSSQY+G3tZwjmE7ljyssp
JKgw2Mcej7nPvrPJOJ0Ezxz/eKAA8+3NdTcKskhQYOv721X/8k9dsdCmXBL8
Ob2l8hfmVN/M3NsFJKj6xEmsD7PWnjij319IkFWxz3cYc/dQ1LLqVxLs1Pg5
9S+/3XoRGP2qjARj46LshzDza3scYqnE53vt7lQ35o8sjr/Nq0jQY9u4bzNm
9QxTr6JavN57u8X/5cnfNrqiWxtJ8EhyWk025htCakV3m0kwkftL4L/8xvt9
l2XvLxK0uPz5tB/mxNvb2I/+JsGaRo7tdpjVFNa/e9dNgiuZVC4NzG09hDq5
nwTflQiyimJ2jVjqtxkiwe28T0lMvN9cWqN+ZX9IMIw5vb78X/5e6pCSmiDB
kB0PDkRiBsk15f7TJBieXHnFHHOLWdGloTkSDGhdlyWJ+Sojg+PYIgnqnftF
H8bnzVH6LilxhQStxb1d4zEfkA4Yu8xOhhPK224LYW5sv/nwO4UMz/Gzbv6O
68sh1F5eloMMvzm419/EHDOrfXWMlwzNT7O6f8f1uTceMrQFyPAHx9IlJ8y1
55UyUtaT4Vi0yVUuzGxfBOeubCbDw/sPFgNc/y+uUiNrxchwPVcSZwPuj90S
i3sUt5GhmNZFJ0vMtoHt7tMyZLhjY95NN5znKvXfrriqkKF8WPpnB9x/6fd7
fr04SIbMLV5aI7hfn/8nllsMyHCTuM4Va8yXN8S68WqQ4aBF2iNtnOdovdHj
SXpkKHQ+7eAS1oNJgfYf9QZk+IqrMsMEc4vGhqRFQzL8qHSlMh/nuYQPzy5q
mpHhV9ZdLVdwntNyiezqsSfDgcb8u6lYjxTe/SykXcHrF1Fnn8d6JdQk8FLB
hQxdwrZKHcA8qPL4/B13MvTKrTPKxXnOjzWsXvg+GcIna14hWA9LwwJLdGPI
cOXawO4IhOutuPzNjddk6BHbKBWP9fTJLNUn5h0ZGk7al2Xh/GZt6Hdo9AMZ
Uuk1REUBgUiivtn+/5FhI1RI/4b1Wi3VM6GwlgxZyBzCkmkEku7O9+tvIEPP
DhM6eyqBGPzL1pzNZHj9d2Z6ezKBeq7fFDPqwOf1YWKrXxKBfFSvP58bJsPf
m6RffMLzBFVdeSDLToHRBydv2Ufj8xGA9CgKBbI+O79h/jneHyPeIFYOCux8
3DR85xmBQgfT/Jt4KVDgS5CAbyTOs6zTd703U+DAi8TcC2E4L+12vdmoQoH3
l8ncF3wJpBLtbuvpTIEKRJB/EJ6fH3u0+geuUaCBhVDOS2s8H3YIW5++QYH0
qmDlZEucv7NzLSTvUGBqhMWGIlN8XjVLJrXBFJhR0pFWcBbPc/bb+hLxFMh5
p2OBXQPXx2Uf+KMDM8+W1V9ieP2W5uWS3RTYCrQ2399CoOzzQNenjwKb+ECd
zCYC5Wr9NdvzhwJ/vTCZdRLC7y950yt2gQJ51Lec/sFNoKoe50JXfir0VpZ0
78P+ZMjI/OCmY1TY30uzf1xLRZf1QMmNk1S4lV1Gv76KikaPbT5Zr0OFtE7j
ea7vVDSxr93Y/ywVunv43vQopSLmOkOPKSsq3Ch16YF8HhWxN+jkld6hwpjF
vXJ/3+A8eALsc8qkQtfUxz/2uVDReJH934f/UeG6AncHrStU9GXf0+LUPCqc
EO4yNXCgInPJqZNTiAoVODzgRVsqesP61sK1igp7/YQ32htRkYt7jWRELRVq
fFB1szlHRUcmlv9kNVDhM9MomQtnqKiv/cz1+VYq3FlsmHVUm4qkcijBtwao
UMY/zmr2MPZ/crt0XwxToVHC0I9WVSoqf28mWDBKhWkbr8YUHMDv/zjn1d9p
KjwutuJ1S5mK9nP0W29mUmG6atMjAyUqovvwSYNFKgytes8vJ09F7fOHJsxW
qDDw2S92kiwVfXS6nOm9RoUZXAPWzdupyLM/8uZrNgI+fRYkfESGik6ZfFUt
JhPw8g/HiHw5vB/HNlawcxLQLqFd7T1+nsK26g4/IQJuMlPXMD6C/WT00pv4
DQTMNc+LLdagojqGlF35ZgKWdirdlfr3/0Us3tO0bQR8drOiYRj746w2RWqI
IgF73VXu65ri9T+KUHh8nIDq8x0l79zxfq2Z+L7yJOCP+tg9pklUFBskMszu
TUDVX9rk7BQqWhFs0bbzJeAJO7cMjnQqypbVF1EMImCsk2z8hxzst42OfSqO
ImAA+9f8Enz+nFnKnf3pBGzN6d5o3klFjZe5D8gOE1Btz/bj23mxvjC/x4aN
4uvv6lQJ8WN/4RNImZsgYFIP5wp5HYE0npLqPzMJGHz27NmmDXi+ly7Z6ZBo
0EJrsFFbikDRooORLlto0OiTYfbLQ1g/mr5M5xjQYG/RE+3Ei3g+dVdG9BrS
YNW1S62slwmU/+fnPm4TGnRhET13zgHrBevoHStLGty1XUhq0ZlAX2SE6NxX
aPDAr68r628RSMTHWdwqgAa9zuW9KgomUJ2M2BmufBp8/JLKWfiRQJ57ZOf3
FtKgLPMMdwb2m9sP731uWUSDYfeF+99hfbpz9lTXf99oUMAwhNMrk0CyPjcd
LBtpcIxGkeHC+hbQVHfvvzEadKvRHQ7F+qnqczfLQpQDVrkZF+3oJ9D8wWgL
T3EO+F12eCR1gEBpC1lcUZIc8NnF5QmlIQKJOw/b/JDlgKdDpwLl/2D9MNNd
t1cFc96BEbYpAjUc3HyDU48DutEty/lWCPRgYa+4lAEHzAw/Z2TzF+9v5uma
w4YcUPbT+c9Zq3h/Ze5L3TDlgIX3abMnWWkoRmS0ufsyB+zMW2AYUGjIbiF3
33++HHD6l2P4dx4aEsts6Kvz44C7b039+cNLQ7+ujIWNBnLAQ/9xcdMYNHRq
UHRYLIwDhgs0xakI0JBSk/+zB9Ec0FxNa4OrEA39zTBYssjigHeOsj49JUpD
2VeuxHnmcMBegdMy+8VoyFkmUC8qnwNWXyu5Lb6VhnreFHz4UcQBi7k3mI6K
01B5uLjx3moO6NfVs3pWioYeXZnK5xzkgB1KI2dDd9JQM4gm7Ec4oFOSkcw5
ORrayKtpUDHGAR+9P7l1gzwNxadFj9+f5YB3mbfdohRoqGBKU2yNlQ5ZBDpf
W+yiIdbiaccLZDr8qrLBg2M3DWk8epmXT9DhD4cQl1TMdUoz+u48dDiaSs0b
U6ahgWsxflMb6fCVg9bLA/toSObosQYdUTqstxA1KsXsLDC7JUWcDrnv71M8
oUJDy5nHci9L0+HeAk3ZE/tpCN6fJVfspEN07rROKWY/g1d6Uop0eFgBBR04
QEO8zNk/vXvpcPA467GNB2nIoOzVPrUDdBiZO1nph/l55PH7sap0KFXoZTWG
edve2M0X1Olwv09pU8ohGrpMPWGfr0WHB7nfpdFUaSitee4/4ZN0OFt19ZU5
5v3uJ0436dHh880qeWyAhry0mC93n6XDvE02/acwlwi9Hnl0Hj9fpl88AjPH
8Im9UyZ0+KXOwK0Fs04u01fHnA7j/pxpXQ9p6Eng69pkKzpMSfTR0cf86/zJ
TZwX6TA61LM5CLP10uvsckc6zLpns2Ecc2LlSXapq3T4/dCLJuHDNDT+fF7n
visdfnSRe3P43/dA9m+ie2/Qod+xsts2/74vOnBq+LAHHcofpF+6/+97JfqC
cuwdOtQSird6jZnU/ubuqg8dSq4ddczFfOzjqRqT+3Q4YBN+vwrzQ8+FDfkB
dHhXcP/HDswNJ9/aCT+gw2/S413DmIU2aWfdCKVDz3Wm4tP/vu8aW2BtekSH
2i8PXPv3vdTbz2+1d0fSIaVFpfYfD4Vov3j0jA5DdnHt//f9lJzp4uBkNH6e
s33av++nrsm9260TS4eu7+m7ujDnrGr7JL+lw579cUW1mP9WL1bR4+nQZGLW
+DNmtVfvRC5/oMOIn+mscZgDruhcLE+mw+kz0elBmKvAUobkJ/z7jitO9pgZ
vO9Z7mfS4X3rkd1amA27dE71/keHHfbVZDHML9OWnh3Op8PapfauObzfPd7v
B14V4vMUay0tw3y99qVzSREdhr6eAFGYOUQjl4ZK6PDOgd8a1piVvvhxK32n
w79GwUsz+LzLuL2enq3G/bBnMi4bs5Hpja0edbgeW292umH2/XtxT0kzHZap
688O4/oSOmWOhn7h+vQ5XRuD+WO04XGu33QYf7Fury7mxgPHTM/20aGaemFC
Aq5XiVvSfkOTdHjo1QVuBVzPORVbeblm6dDQ7ZpaBe6Hk8IbnivO06Ft0ByL
GWbXHHrKrb90OCn8baM37p9S5uhPTg5OeOxjxI+nuP+MNPrNFLk4YcyuFd11
mMcjOoYNeDmhx8CSadheGlqnXP03Zh0n1Dp8ef2tPTRkey11m6I4J3QKHZ0X
x/2+VByfaiDJCb9Rh8vuY314yIhVubWDE8oa/dncp4T161PYqa/ynNCE9ONS
pCINUSevuhkc5IT7StGlOqw/0eDy2k3ACa9tT/Baj1kh1DIwRo0TrumrbzbC
emUop/9yUIsTbih9MNcoQ0MJDrtLbxpwQs2pFfrr7TR0sEBWJ8aQEz6S3Xfx
O9a7Wvq21mJjTvhhasOJaUkaWvwgOEa35IRFriMflbfR0PFhpkCMEydM5z/Y
+gjr6R+bXOtif06ofG+mPU6Yhjgr1UKlgzkhKT9l7S7WY1m5H7mPHnJCpp0L
r/F6GnJg/ua2iuCEEjyeK6tYv0f9SLnsbzHHVLKuw3o/Gq/DpV7ICd9Tmju9
yfh+nK17k4s4Ied3n+kNJHw/Z0tLwVJOmBzlP5fOhu+3z+2//u+ccLOuU1Xj
Gs735c8t/Fo5ofXm+5WDiwQaH+7P+jbLCd8Wdew8MUYgbu0rXfILnPCL8haL
93i+yaUvcDxd5oQtAs8ClocJ5HSLbm7HxgVnf1tnvcDzcZxDkYPGywV1glYf
JuE8OCHjaXpchgtWBr9+QMN5Z9KRQa2y4ILn2jlNivB8Njs97LRszQWrJYHp
Fzy/q3ejph12XPDFmRN9uXi+f1x2jPNz4oKLEVG33yUQyC6wQh16cMH1Q82T
OrEE6nrnfS/jCRd8GHr0EEsogWraxlmff+OCDm++1FdcwvP8S+ml8koueLtg
z97z2I98fBNdx6zigkq+TvL92P8HXTr+Wr+RC3I88e6YNsPzeP495Ormgp0n
pQ/3G/z795QLXt5LXFB9NDVD8jCBUo59X7HdyQ2nTymTxQQJJPM7zfG+Ajd0
nVEJ0WPgvOIS+fvtLm7IvKrd5c1DoDcvLFCXCjdM3JE+0kAjUMTYvK+RBjds
jBKI01/F/jNcgq5txg2lzF5dzhugouOtt4WVw7lhc7+SlEwWFQ3YKexhn+OG
I4/WsdRqYX/PF69ps8CN/U9o4dhR7JfzNp3/tswNn+jvYCewf6Zx0T2D2Xhg
jOr1bUoqVCT7qb+In5cH/nxtvGqyg4quLT4/JSHDA+t1JB9y07B/DSLbqFvw
QLLQvNt4KQXRdnlej7fmgdy9k0GxRRTEaJ/2p9nxQJPyo9Y6nylIXK7rQ5UT
D5TOZTi+zaQgjfq8SQNPHrgSryi07S0FhYg4e9pG8cASo+CJMC8KEkn69di/
igcKapyv27iHglwaYnpSa3mgmlzWjQJFCqpYtlRsaeCB8v6SUed3UpD7yT/V
23/xQOeH/iceSFBQ89gyrXKAB/Ictm9oYFCQ3DpkOD3MA7VEnILNuCnIT/Ve
vMgYDxToTq8bolHQnlBOdfsZHvhFcrPALAsFPfyv9vFjJg88y9sveH2FjPo7
n/TkL/LAvkm5T3PzZHSQOK/Yt8ID3QZ+D7nMkNHxp9yQwsILM3mdHvNNkNH1
j84Xn7PywqjvK4mR+Pc3qP6hHDsvVO0vthBeIKOlociOsxReSG6nf1rPSkGJ
Kls84jl54cbVOxnzeL1Em3y2ljAvnCtlXjuK33/3RHhHuwi+3jpE5u1+CjJn
nyVd3cgL2XwN3dZUKdj/5eg/28ILj79Zzk/TpKCLnnBqeBsvXOL6sTJnSEFl
m07LBivxwsMR74I5PCjI19zlTdUJXrhW0SJyFp/P7OrG576neGEDs0CnAJ+f
7ctv4So6vNA9tjx4SxkFHf+10ee9Hi/kGH4p2FGNz/fMN7Pb53nhFOujs7u7
KChWc+OmnRd5oU9pRKkeGxV9liuLenCXF2bo+jgcw/U2vyIcciKXF/b59jyf
KaSiyZkTgYt5vNAz/IfxvWKcV0du348v4IXw0Vc+RhkV/Wrpvs2OeCFLQZGR
BM6rhZmJTvllvFCjP05Poo2K7jmo6Mo08sLfFW724Uwq4m035KdP8ML4L384
N8kQiNYQxJM7yQvZR+Z9T8gRiK2ygH5xmhdWfsjqvq5IoJn/RElf53jhk1uV
OiV7CdT0eGj21govzmMqoypH/33v6d40QuODdw8MtISa4HyQH/WsUoIPliu+
P90XRKDyq86ZxpJ8sKRHRtArBOvL9mM1o1J8sFD2z6b1YQRKjFgi8cjwQV1X
3VXVCAJJO19w1lfkg+eeB885vsL9v01cs/0QHyw9zYzUysD6GJoyO3aWDyqI
3o6caMF6pu7P42XIB52V+9OU2rBerphJ8xrxwf6GX/RrHQRKvcRnrnSBD0Y7
0nz/dP/73sr1+3UrPpgY8fNa/giBlBZV3qxd4YNJgvYnm5cJpGxVqsMXyAeD
skdtVjdgP/1uYH9JEB88Frs/nbGZhtj6qZI3HvBB88r9ReLYz1fbHl9pD+WD
A1BF6qAEnqeXaxISIvlg2I1UhoYsDT292soK3/HBiYubbQvx/L6TvjQ6/Z4P
sgG99hg8/61nNrS8j8f326Ao6In9hIKbaQo9Ce9XBlEje4SGKtx7jZo/8cGF
b3NWF4/j+ew1luH0hQ/u7K3ZcNiQhroQ9yuxIj7Irb6+aOw89iusCkGNxXyw
jPplR5QxDT32dTHfX8YHc9td1btM8bzyn+ekVPHB/bvuJpywoaELD1ltX/7i
g+EW7vL+V2kIRQsK/ZjjgyZevdPh/jSk/bJDzHKeD34kz3wqCqChtpfvZRYW
+OAOzvjX44E0xIxRBhIrfHBsmzM/fEBDO18b2HqyMWDU4NcjRWHYr7+PyJTl
YcDKq37TB5/R0Pa4C4XFvAxY3b+tEjynoay4beWGDAb0/WPeCF7geR+f1XZP
kAHzBHf57H2J/cWHn2wdGxiwmX0DJL/G/idF8HTIdgZMaQ5yEUnA55HaYSQu
zYDjW6PvTWIOTX1vnSvDgKI5Yd+/JtLQhzRl9345vB7NLwsWSTTUnW7w6pAy
AyoleDd6ptCQU8amxIY9+PdNi+EHU2loJaM//dI+Btx56tH9RcxCWW5lEQcY
cDd3JY/9J7wf/0WMjR1mwNrfdZmymTTU/t+Fed8jDEho10k1Yb6Us41VRJ0B
l3wO1Xtm0dC93CwBDS0GRHKU6qJsGsrP/3kgRhtfv4NmK52L9wMJBmkbM2B/
7/Sh65+x/xG2edpuwoCR4T+rJjGfdsmMu2zKgJrXfTPsCmnoloT+Vz8LBnQ7
/Mdb9wsN/QgIWym8yIBlT59vZynC9dDdyXHqEgM6Fd+3t8E8t19euO0yAzps
fEIux7x5rEp53pEBb0WVg/vFNHT1NP2KvCsDbiEZ1XV+xXnsg9Htz24MaAak
6uVL8Pmxfwg+cYMBzfOvy9zGXJKllXDxFgP+KDs1xFNKQy3cT7PnPBjw4W65
kwaYxy4OlvjeZkDdGDXaU8zrRPy6X3kzoOdabqhgGQ1JX/s5sfMuA151uX5e
FzP4IbGa78uAIs3CtwMw2935KtLix4C/pSvqJzF7NjN22AYw4ION8mSxbzQU
rmC5dzaQAcPYFR5pY87rYTnDG8KA1HP/FbzGXH1A1zLmIQMe3fvU6Bvm3iev
nGXDGJBtplx/BPPC2PidvHAG1Oq5nsBRjv2cpmqI1mMGrL9YY7gds1hsyIum
JwyYOrlmfQTznsX2ROtIBrSfUa4yxnxcTzZnOooBgyZiwq9iNkvyKPN+xoCd
Dnbp9zC7kr43cr9gwKalL/IRmAMuiPRGRzMgU76B9hbzy+xLU9IxDCiZWANT
MKfz5K7lvGJACVpvYzbmMjuCW/M1rof5/WUFmNuKzm38+Qb/fTGyIMI8KRIv
bfWOASv2Xin6xyRX5r6p9/h8xuK+F2IWqlLX9IpnQOfF1l15mHdKRhhwJTLg
qMCepXTMal59Vi8+MODtpaHNiZjPtuxy2fER96ON6JtozJcVfb3/S2bA9fwc
90IwewXVP1RPZUD3woYSD8xPesVeNqQxoKt4kvVFzAkHryZZpOPzXPlspYu5
IALlTmQwoCDb/uI9mOvGecpvZzFg5shJbxHMA5pmTfT/cH9ckohZxuexFJvS
9yyHAYUVxjf8wsyz9HdaKo8BHw03L2ZhltA/xZqdz4BWqjz7QjGfIo9uqi/E
53F4U5MK5oQh3xUfxIBpSrfEqJjZfmxoUyxmQJP9tHN1uH5yHp14Gl7KgENb
43xMMDOu914//A338+7tNzZhdjzvYTBV/q++S8614XrdKprEOP0D9xuh3HYK
syf7kSmWarze55532DA3D/yqSavB6z1YxpWJ++FBMkcIbwMDxr3WmOLCzNx/
mVrbyoDPpY/VR+P+0t3MNuDVxoC7vo237cOcxPq8RL6DAWveWTbU4X40L6/w
Ce3C62t+9mAJ0VClwY4V7UEGVL9yV04K97eEStGv1SEGtBxv+vgB97/XxvO5
KSMMaNeDRGQw7+4NuM49juuDY2/ZVqwXMc5Dk1WzDPiM1mgxlofrXd+75jYT
65XPiqUhZv29Qik7FxjwVaSHAcL6Q6xq2ocsM2COjAmPfw4NuQTH959k44cm
ndntE1i/fjiBkhV2frjY/M5JDbOUXvObj2R+2Jvwdib8n/4JUc05afyQlp/S
LJVBQ5pxtr++8/BDp+2TXPJpNPQmcDXHg48f7gLGqpf+6atDZJQMPz90rwq0
isX6m76r7EzwOn74DBAh5GQ8b4u21RzfxA9DG6wsk7B+T7b1fa2Q5ocE58xR
mzc0NH1HvMhElh/GTu129MLzYFbMsnBiJz/ULa6fiozF73uxM0dQkR9e/VvB
WxhDQyyzrckWe/nhw437PoziecPLWRO1eIQfPnbVuvL9Ea6HVK6IB+r8kML2
xTk/nIYE9E4+2qLJD7/t3laXgOeX0NOKB+rH+aELq2Wqx0MaEpUo8QnX5Ycs
QmwDrEF4Xh/Mtd9xgR/S92WahnnTkFLnvF2BKT/8vfjb4qwXPp+7e2x1zPlh
tbVrmfAdGtpXnmHuZoXfp/lW5lMPGoJnUgyKLuH1jiltv3Ed14vDW3D+Oj9c
sZgJzbanoSvRIfyBofww7Me6y/AMPg9WiYnj4fxQoODb7Xt6WE8v5lVyPsb7
y470S3VpqE9x0Ccskh8mzutrHjqF8/Y3OBn1kh8u67/To2jg/p+e+RGXhNd7
MkbyL87/67SM/Eq+4eeXETu81tHQteRJC78Kfkg99mHIGOfhWob/Ia3v/HB6
ZN5ZmUFDwR0Zs9+r+aHRJdv231x4f69xWTX85IdvvA9J0HE+HnmJQE8vP4yR
ePa+YppAmuznNrzr54cbN7gQ1yYJ9M5ujGkzyA9fpoG9wuM4n+4SSRke4Yfb
a0IXjXHebSy/tnFqih8aRkysy8f5VlGOYyF9hh9Wihh2Hsd+7uHj2AbXOcwn
7NyafxHomGlV0MIC/vsCF+iDPwkU99XKNm+JH9qMpdEvNxCItGPpsOcKP+RZ
DPo1XEsgi4dhm1RX+aHEFXF322qcP2ckF9fW+OFEWXpf53cC/Q99zUK+
"]],
LineBox[CompressedData["
1:eJwVmXc81V8Yx32/dxnXujcNtLUkI4TIOam0SaJIMkuyKqOyVUJGRSpZSbIr
LSnuMYpklexNlD0q417jd35/eb1f1/d8z3mez/M8n3Pvaivno7YkHx+fIIWP
7/+/cT5WdCUbT20TzWXRCyM0FG86tP34KhPQabHpkM8ADTUdDrm4atU50Png
Rxa3l4Y89pqI0FZdAYPebb5DrTSkWwLNplYGA6CQ9up1OQ1lBahcG1v5EKBt
Ucubn9JQl2X24uGVaSDCb37+tikNeRqctxhc+R4Ul4yKRBVQkcDMoy8O8uWg
JPdf31MLClK/2XT1gGU5WDA9WP7gJAXZSSyR2xhVDna2rjMOM6agz0p3w3tm
ysGiK4uzPQ9R0HX7IEPTT19Bdvd3M2d1CuJrdW3ba1YJIl8bRRaLUZBnR8pl
8T01wP/Edae3xSS6m7LHwM+8BtzqK1Omc0iU7vhz06hHDchsJB1M80jUzFvd
UpFeA9YrXHsq9pJE6kvjdgSJfQNB6wqt3sWTaPJIJLnQ8g1srqh04fck0YUi
39Chi7XAzRZcSVAn0bR4VFbLrVrAQ7LmVSok8rFMrSpPrgVZyp9u05RIFMr3
TSytvhZobtxxIWwTiVK119yz3f4D6Bdt3MSQIlFnXklcO1EHNIe2ahQvEOis
YFNBpWQdiN+cYh80S6ARk+GOj8p14MF1uPPEDIFmpyXWPLKtAzK+5a5L/xBo
qdrZlONf6kBk/guRlb8IdOSVwPOa2/UgyvOGou03AjWQK2o4afXgz8MlZF8V
gcyPbh3PLqoHTVKf8i5VEMhh3FQ57G89yN80Y/O2lEBBCpnv9p9oAFKFlhKt
BQQS9UWN6hcaQG5S+aPSjwSKrvoxsyGkAajaRvAV5hEo2XFOk/6xAcT8eFfb
9pZAnAw9VLSyESgKTV8uek4gXZ5V10v1RnC8rrx6ZTaBKg54kI8NGgHLQ6Hi
ViaBmvsTdvteawRUy7+M22kEstR4besU2wig/rTjxlQC/Q4qCzz1phFE65d/
rk4h0OSG8TLNX41gPzv77sFkAnl70AZk+ZqAzeTU2lVPCEQtXSYkuawJVIZ4
/KQkEejWYnk5ga1NYNruWudkIoFYZ3QOTx9oAke+6a+dSSDQwzfGTr+sm0B/
9OBbQcyraOcj6r2awE37Hcmb4wkknxz57XV2EzArKk17FEugRQ8Up9CXJlAt
JR/Y+ohAvFuV0pU/m0BLx9IIBczdvvY6TQtNQL9aviwqhkBllxh2vZLNwNX/
gjITc/bZ5LBx1WYQH7fj272HBLp3cueruSPN4PPHg4lKmL302xsFHJqByMTL
uI4HBLLa5TkvcbMZ2Ez3liRg3qe2VGZNUjOgU5DoRcwKm9/sl89vBmfkfdyN
MS9eedR5e2MzMA0rGz2EeZY1GqX7pxmcrn7jYoS5mx6ad1SkBfRerRlyxlzG
3dhpvqkFTL2VNo7FnD3yiXZ+dwsYiV8R14z5XrfVZo/TLWCjZNcL2f/3V79w
5NrVFpCqNOcTitmqPNY94l4LEGl7/GcB874CjdhHL1qAEoyduY7PK59TX/js
awvgP2pxVQrHZ1HKpV+v+lrAy15x8+L/4/dQTBgRrWCJSPgtLxzf7rCsrRXS
reDCD9ffunF4f/4HTjSqtYJvGsoma3A+st1+ef882goOegkXiuB83Tt3/cmY
Yys4en8TycT5tTIoGOFPbgXJZnaR6jj/+/acXCTBaQVDTYlJZ7E+FDSmNVY3
twIu10zgGdbP7KqtNzTE2oDFzCED42f4/Yuq0/dsbgNcG7OBT1h/X/gdagx0
2wBrQ/6BPelY/2NPpey92oB/dHPZxSwCKaJlOTG/24Bdc4D99dc4/q/fNqRQ
2kFomNcfR1wPc88M53JWtIOYfdspZ3IJVB4Rtu/rsXZgsPupsD+uJ+vTRAcP
tYMH67WkzD8R6IBhPJW/tR1cdNCXfYfrUXGvpuyiqXYANzmeWV6O9yvv5ia3
pQOslol7I1aN9zP/W+jUww5QddKrNayJQL16dtId6p1g5Rq/lg9jON6fHWR8
9nQCqfX2ZDzuFzo7LsgtP9oJ7miu0A2eJFDi5qtaJ893gnH17Y+u4n5jxh9q
1hDXCfS6TlSU8JPoe+Hz2GqyC5y7rp/YvIZEBSpT0qiiC5zp6O5RNSPRcAZP
5nRTF5hXi70xf5pE0mv5tsz3doGX6WY3K6xJdEVcYIfWQheQ92btu3yeRCoj
kqdylbqBaGuwFBP30/Rn2nEvorvB2nXL/4g9ItF9ycDljy16gF6WQv5cG+6/
PVXP9Jx6gLB64srkbhIdy1qyddazB3ivH6s9/ItELJime/x+D5CxjexMH8P9
1rbCWbiqB5yucj4dTKEgvxesoiuaP8HCxdHw0k14vugmnDm6uBektN9eWutB
QRoXc59TKvpAe5t5quwSKipueHTEecMAeLxcRLTyEA1FWRn9/ac8AOTsYv0V
DGjozLDIAy84APolW57cNqIhQUpAR7DJADjR/Lxfz5yGjsjbOSXfGgAtpsuk
PzjTUPt1ldCm0QGgGbFOS/8uDXGVKkt35Q6CVaYXko/U01DFx8Dz5SWDIL9M
uzWgGc/jvVDU4NsgkHK3snzVTkM7T70yNh8YBJ7niveJ/qKhoKCHvZelh0Da
41swZ4qGFnfYUrL9hkDT8+ybSUvpSCl0Xnvp/mHwoq7xt6QJHW09N2uTZTwM
EtSzTc6eoiMVXW6Ijs0w+KTb4fjSko628U3WO/gOA5XeYVdtezrSch12Knwz
DFJWDWdretLRPrPWePs1I6D5paE9iqWjAxrNJQsKI+BKJa2kN5GODi5uHIja
MQKu/r14j/8pHenV1G7jnBgBj9rW39PNoqNju79WsSNGQMCwHXqST0cWcnnz
H3kjQJapG93ZRkdWArkyRwVGwRV9zR2tXXRk3ffmwK/Fo4AvX1ulrpeOziS+
jBbfOgp0LhMCnGE6cliUJn/GbhTINmxmXpyjI6fxlGM8t1HA+6QwcZxgIOeq
5Ku3r42CL5N5Epo0BroYlPg5L34UJJlZMmeYDHTJNn5IP3MUwEiipVaMgVx1
Ylm970cBi1Ruz1jEQB6z981F60bBihy3K4bSDHS56d715O5R4JMhI7x2FQNd
fRuZrjE2CnbvTKwYXctAnpF3aqrmRkFMQ8Gb9xsYSDt3L+8lbQwsphyPdV7H
QJwU3XAv5hgIY/rGTq1mIHhvz+q97DHwTmM+zmsFA+28uGtv66oxsIsvJNN7
CQMVWeg0p2wYA7/OWuTPsBlIR3+n4wX5MfAienXDRbzf3XIgkq41BjLyxLeY
CTDQ3r7tHYrHx8Bk6dADIR6OV+2PoZunxgCoPBCTNUVH15ETt916DBxIi2If
/ktHhTFJEmEuY6Bs+znX6ziemvqCh/qDx0B75LB0XQcdKeQ25T7+OAamHHx8
ForpaEnI5busNeMgpdc3+noIHf3a8nbP36FxoBrv0PdOjI48Z4OVP179A651
xX4WF6Ihhvjvc8dk/4FjcaN6AQ0URKuk7RXKnwTlz+qsJN6QiOkYa91WPAmy
H+q36r0g0SJhZb/n5ZPAwf5fQkgGiWQOW7w3bJwEFmL5+wSSSLS7Mm9z7J9J
4BzNo6yLIFFApbPYFtkp8NRHc0vfORLxVTU16d2fAjo7GgxX4f7E7+QyuSp+
ChxMOqT6ZTmJxEQY7D/JU6D3iRXbYxmJVumpHLqfMwWOVMqodouRCFSFF3RU
4vUOwW0z2H/5VO164kKdBh3Q+c/uDjyfqrIc7l6YBjs+yyfvwvNjxTfLR7sv
T4PuuSPeLXj+6NRKlE/6TAMTdprd//MrpMF7w8nQacCZdZNuvof9Wefh7rXP
psFN06p4gWACaXUT4vVZ0+Bd+aPMkRsEsvj5BgS9xutZt8u0BxDo2e/lcUOF
08BD/y5/mxeBto0PH3/TOg0iN3+KOX2BQKZ/Hgee7ZkG5/b7TMU6Yf/zz+jN
soFpINCaL993nkAlM/ksn6lpsHiY1x97hkCGZHilLmsGBPls+ZJoRiB3qs7s
9NIZsLCLIa9jSqAY+qRsxsoZkMrcPzh2HM8/QfMg0S0zoOjXqLyHIYFc2PK7
GvfOALeB74vkDhIoSqL7QojeDJCLKHXfsZ9A75ZEJ2oZzYDvdVpZp/YSaF5q
fi7RagacbCo98nUXgdasyJEzPDcDatXMly3TwX5w1ZmTNJcZcGrLKUd3SKAw
marcc94zIGdFi53FDgK9WB/wS+r6DGhOcDg7rEmgHxu3La4KmQEg1SUhZDuB
pLfEX9r6YAac2T5kOalGIKhwNOln/AzYHnd8x6dteJ4q0b9FP50BPVuJv8mq
BEpXdZLn5cyAfiIo5L4ygarU1pzKej8DPlp6vkrfSqAJjfpbp9EMeHUuf3+1
Ep7fWiF54qUzYPD0XycaZg1t7f7iyhlApt3YdVgRz0c4scT9Bz6fW1BfigKB
/HRSdDe2zIDZnFw3Fubk3aZuzV0zgK1vL3xbHvsXXZHk0N8zQP+7V9lKzEP7
ir5rj+L/t9JHhVuwvz7oToz/mwGTam+Y7pi3HpZVfDKL43tzoFgLs7F+u7kR
hQssuMFcCcxXDe6GMQS5YNvrgGICc7yh7sf3YlyQPiqiyIe5yIg7cH4JFxju
ytAXx9x7PHvZihVccOCOiKIq5pQTc0VmMlwgm34m+ixmO5NDDo9kuSCX7DRP
x7zJ9JFEsyIX8JYcuT2HecB0oGCpGhd01a5RtMT7zzypYXd8Bxcouh3XqcPs
aBYkHr2LC8ZJny8m+PzypxryfuznAorem88jmMdOrbdhH+GCkoA0jSgcvxxz
N+GjxlwQeChy1QEc30unS97eNuOCpFtql8VwPlQs2BbVVlzQEP9L8xfmSQsr
AZFzXPAJBNhW4fzlWr7MOeTMBRITrsOfVAh0xYrP7JYbFwhQC8orcb5nreOz
+QO4YLutoqmIOoEKbIaP7w3ighqp3X90NQjka6tFBIZzwUxzyPMIrCfybLMh
5REXfFa1O2KA9VdydtPczsf4eT+qeLk2gW7YXU7xe8YFoYKDmUexXvntF8/M
veKCgtmrqyKxvsvtbZO08rjAVY4sP7AH3zfOvz7oibgg2SZ+QhzXg4jj0fjp
Ci4Q9Rw+XnWAQGyX8F1/erkgMVnCePYo1rdL25DSEBfcvPS1R84I+7kLctEu
E1wwxtpMccD1uPRS+e/heS5Qm9/vJIHrd4U7Pfz3Eh5Q6ecJi+P67nQ3Utuw
ggcuWe/em2NHoMceyZ22Mpi/dw1b4H4gc0VHuUeRByQP8Pf2uhBI1sunsW0/
DxhZxIqE4P4y5FXpL32EB3w9FA7c9SVQlrf05pPGPLB2BSszBfcjRd8870Yr
HtDV0ND4E4T7UcDkmlpPHrjaEV+xOJpAO4OcHMuyeODL0ufqVjkEkszpOB7+
mgf6Yh8/OYf979+WIzrHPvCAR/4nBS98X0xRUF7SWcYD99p16wqLCMRsmEJT
PTyw2v3ErS+1BKpf579og+QskBhaSIubItD54sgPNwJnwcFkcUWhPSS6N58r
sOv0HKgxn0w8N4LnyYZPTvds50DlxLHhG39IdF3/W+2v83NAT/nv+yfTJLqY
2B8XenkOUJz/hPWQFKSnI7m1/s4cMNoTqXtxCQXRAz1Nz5XMAXOHeVoBpKDL
wtoZEZvmgdWJkeSMSAoaVT0g1q0wD3h/D31vfkBBZ8yN3VS2zYN1zZafBOIp
6NhzJ9CkMw+u7C78fiaVgpQMEmrXmM2Du9bFjtL5FDQQxTf7JnwekH3O2o59
FHRSuvhQ65958Hql+sZz6lQ04Dg+8YY7D8LdJFWHdlDRZc7KhxHEAlDbxUWO
u6go2sqrV0d0ASQm3VJx0KOi76mqPmmyC+B0cFmakQ0VHVBNfe5uuQBShd1l
fkRQUVNgvdERuwXgWz/kpXmPiuwaqbObnBfAhyeibYkxVBToabmvzWsBPItb
F2P7lIqKCiW7dj1YAA3TOkb1eVRkwN5/c3nCApCpWq6+BVFRp43HlqmnCyBD
MGLM/xMVzTN+XEl/tQB0FErLZWqoaLteGEu8GjNn+rp+LxV9SfiQO1C3AK5V
mLlGDVDRifF+85LWBbB7wZvZMEpFfTpLafE9CyBde/G+Jf+oyC1KN8NjYAEE
7hxfbcSlImqfq4HB+AJQBkNRtxeo6K7akynZ6QUgn/Tv0RcqDa0O/hZHXVgA
Kh+ZW/kEaejE8MLqUZIPOsT5eO6j09CqxUv+naTzwamcFRvECBr6pS1fVibA
B2MOmtnW8ajI/baZU5IYH1Sa/pN1YpyKopTf5xmt4INoDyR2tVKRmVlNWNFq
PniDRa2dqqeitTd+WSis44OxQR8s079RUU69BENAjg9uLrlbwV9KRTVXLhp+
1OCDRcfXXs14SUVMtHlojREf1GiJDQ0LpKLuhwZlvif44OTWZQe2+1PRu0se
ya0n+eC79AyNXk8qstpQbBZtxQfvdX35onoBfx5uWingwgdf1lo6FZ3En58K
zh4L4YOLAlLX3lakolxun0sB4oN7acpbtzVRkK1q0j8TOQIueLnUjG+koJBw
CVFvBQJ+nNkuXruWgrJ/BW1M3EpABxcrlTcrKGjyofPJPnUCTmz8c8prEQUF
zWsVXtxDwGqp9eNL+CgovbQh9JY5AensV7fuNpBoxERYJv82AZk/hS2WBuH7
1iu/HZ2RBFT7nLpP/RqJtjH/GlPuE1BEsMb/pA+JfAuag/fHYe6QPZDpiv3X
2tTRujQCbrLsYFy1JNHWIZ0PI0UEPKF+W6ldk0QePpePrvpHwH9uesoJfwm0
cciLeXOagMuZVH86vr82mvh/HuYRUPk07bj7IIHUVUO2fyBJeHP8goVLN4Gm
Bx+tMRYj4WhQgW1tDZ6PJpyJW5tJ6J/5ID3gOe53pcWZE/IkvKg2HRCSQaBm
lbIzJltJqBItLxuP7/uaYt+a12uQsPOlaVE/9nOzn7uLCnVJKKV9eMvSO9gP
qtAjpyxJ2C5qcZ10x/MtSfCwuS0Jr8/+0um6SKB2UVHGJzsSpnfbwmpnAoHB
JZ53nUn48nrRl6ZzBOJL2mS9xZuEREhEerY59jei8suj/EhoZ1g9zcT93MJ7
awP3GglNTO5LeJkQqPCE5sGyEPy+p+oXwo4RKED0sLL1A3xeuwIHf+y/tnob
DH95RML3t9ZN2GP/1T1g9EwxgYS0kIG7Z/C82fXZXGr+KQkfMEJyovB8+qts
XWeTRsKlH+wvle7E/uTx2YivmSR8KhVby8TzjOrtQnn4ioRufFd7qrUI9HrA
NX/hLQnfpHqWHsb+y+bEFY8zeSSUfW/9ql3j/+8TvJUq80modBZ9DMDztUQ5
YFC5kITev9WmNLAfc30c+DSmhIRefX6uVOzHZERvnSbKSHi44uTubjyvbwxE
1lZVkVC/tEGsEc/36w295bxvJJyt2zQ4j/3A9RK1oo11JOT5pBRtw3ztZfB7
o0YSovWLY32xfwiIb3kR0ELC7YmvrjZhf+F/a0vq83YSzo9sttj9vx+77JvQ
2oXjkRl/CMn/P++/RQv0knCQmaB9GLPP0bXh236TcOKWqvIg9jfewO2G9SAJ
PRS618Vg9pIr9bo9QkJJpwQxU8yey5a55o+TMCKzd1D2f/9FP39+4C8JOwye
ZzMxX/nz0WrJNAk/OHrrLcgR6HKniOluHgmdh8w4JP7co9LC4MI8CR0Nh/4s
xuyel7MvnqDA9YRVmyZmt2dU+JVKgZ39d89fwOwaZaw2zaDAn19nQt9hvuSf
Kr9OiAL/1RbIi+D9X3TirjsqQoFvMjhabpgvnDy03FecAm8O3H88hNllX/yi
zEUU+K4rTdcVx8NFdUyoaQkFdn/csIiJ4+e8RodCl6JAnRHp8VeYnUSjuFtX
UODOTo/i8zjeTrO946dXU+DLHraLMs6PY79af6gMBRYbFjcLYv/lUB/c+X4D
Bbr8MukbV/5/Prc09MlS4OVN71x/4/zav9hSzZanwEaRb2dGsB+zC/mW76hC
gdeqi/5twHo567H2TYwaBU6KHT9yEuvpjI1bZul2CpQ8ti0kDvsxG+1lj1bv
pMBnSvtF9bAfs958/q7ebgq0cYxhfcR+zGppfrDnXgocV7hpq471azlhcbnu
MAXSJLVtTmK9W3TkOJMGFKhp31xMYD9mUUE9q3CMAmvrypvf6BLIPCXVKNiU
Ah8btN3RxX7M1HRs646zFNiuqlFOw37MZK+OrL09BVrploZK4Po7oRK1+r4j
Ba6I0fqsZIz9uIi62PglCqxg23DD8f3JsMh3ONmPAidGaMMN1gQ6JCuayoyh
QIclAwf8LuP1ypxTN8Xh82ZNmm/zxOc9U5Oqm0iB4VRFvklvrNekO2l+KRQo
raN8/M41XH+SizL+5lCgV7CnpUoEvu8ILctu/UqBPvI75IVTsV8bXPM6c44C
W74usl+H76czwddef+Gjwi1p1T++4n5I3/jzdR+FCoFq/XePPgKtsnn6ZpUg
Fd6NPby6c5hAx1o3vItaTIXbqNv2js4S6GOFXJ6XAhWvz62ekCJRWNY2dMiS
CiVJbcdpMxKtt9homWVDhT/bxpT9cP8uYEmSInZUeKzD/KLQGRKNecztqnai
wuu0CxQ5ZxId0ykpNfCiQnn+57si/Ukk3WBQbXwfvy9n6Fl/Coky+RzbLSrx
fqdelALs18oNn8y6atAge9Md5sMICkKVzqFyFDoseWgu6JWD5629P6xoo8PW
Ew2rHzXRkIqVRdn6Ljp8GP/zWXcbDb01AUf8f9Jhvmj73IZuGnq/b+70tkE6
3B/rKZI5QENo/RXfxGk6rDwV5faQR0OV3S4FrmwGtHObIxjL6ei3qYXW8v0M
6MJbLCZlTkf2R0GJxyEGnLud47XEio6G9q849F2fATsepJ4VP0NHo+qtJ28a
M+CanSeezznS0eTiE57j1gxodtPi0ztvOqLU6ud98mHACZVS1otYOlpxEKg7
vWbAVyv/zT9upKORwvNz4e8YsFpbkinUSkcc9QdFz/MY8L2txvMLHXRksX78
0DhiwCf50y/U+ugoiXhi6VrJgK8//HJL+UNHFy9Xr79Xw4CKbC367CQd7Rrl
Db6pZcBzrM6V+lw6+tl6zH2qiQEtNv/8PczHQBty6beu9jHgXq+WFGERBpqW
Vz7yqJ8BZTQSjPXFGajs6WmJj0OYXa5eC1/EQPaRuQlzE/i88556NCkG2i7Y
a7NikgGvDaT2a61gICF/cVkww4Cel7i8C6sZqHVqx+jpWQZkL5q+lizDQJlO
9q/9Fhjw6qis348NDOTVG33lMckPP+wPX392HQMdNivWLqLxw4iAeoXf+PmR
/dJfKEx+GCY1KNwjyUCK66raApfyQ55R34aPTAbii+UmPZPihx+Lj/rLCTDQ
N9YGu7IV/HDFqK1vzP/f7/H5TQis44d0vSAX53k6etOixAhT4ocGuq4n5kbp
aPvde4qRB/hhH/PEj/TvOF4LZtcSvPjhouiTaSbRdJQYItlP8eOHJ9N1aQp3
6WhWolHP7ho/PPXpeg8RTkdv5QwllUL4odv0Q6XEG3S00XT/y6L7/HDa2/k0
x5WOmG9UO3pz+GH2Xrp9yFE6+mEvoinXzw8nxzY4nGXSkU09ZyLXSAAq1oi2
j16hIW3/gDeWqwShgsvPMzYnsL91Hv/A/CUIxWbvn6epU1ADiOU/PyAI12zU
3rZTmYKkxfYafRkWhOUjbsK+8hT07EXsyI2/gjDZ6dFKYh0FfRzfu3qBEIIH
WaF3VrEoqO9SfOC4tBAErdccWoZItP3yQYP6o0LwwWILbkky9mf7JuNUjIUg
vSpSzjaRRCVLHw/cNRGC+7pnWwViSaT/fvKavoUQjPDxlrKMJJEN9/HbMkch
SMRON+4PIFG417TUhyAh2KcW1SGF+0G339O+hAIhKOHzcWPkWhK518S5lBQK
wVb5rAq1VSQSXBXN/V0iBButnzzvkcb+jxMosvWrEHynZZhpsJhE1+bObitp
EIJHY/7+DBYgkcxV2cDfY0Lw1OzQyZvj+L7/ZY2Y8F8haNTz8nP2CO6vy6Ri
lKbw+yqD3DuwH3TNFcq+OicE5wie/Cnc7z5NDtUxBZnwePGPqsoW3G8vPV+n
tJYJm9q+BSeVEYhb9Oy50XomLJcOS3H6TKBwVqLG1U1MWLnBabtuCYHevrx9
uFiBCe/WOx9bigjEGLvgZqTFhGbrbq49lEugWGC/cAUwITz656sHvt8qRlgF
x+swYdehTr4Xr/G8kDeM+7WPCYPNvKN1XxIo1UHl0xUjJr4vrBEQw/5T66Oc
fvwJJuSe+PT8SRqBaoTWNRWdZEJF/uDe3bi/z6RLDAtZMeFvdwGPF0/x/rjC
Hoq22KldShH2TCbQmgN0wsiOCWOOS6QZPiHQgf7JRfFOTFjgufuUwmPsR9VH
44suMKHms/cZWxOxXwj6tfGXKxMGiJ+03439Lb2xI0foMhNeub4hxyaeQDEb
GrUUPZnQp8bgUWQc9rceNZ+P+TDhWWONHd9iCVT0uezIFX8mPPDSKns5ZuPF
hc1x15lw7Q0X6pVHBBq0fW9TdBPHw136WE8Mvs+X60TI3mLCt0s2ix3FLCdf
8f5uOBOOWt6L+v4Q5++u0U/uHSY8ojc4ZYPZYbJdxPoeE94KMdIXwBxqaqfx
9QE+z5PQbM4DAmUWjFsrxzKh2pOaDUGYK9Z4hj9KYMLAtV1frTAPBVLfU54w
YWjvvzR9zMzBsJ7zKTifg++q9TDL6S8R+ZHGhB1rNPdbYD70KlFdK4sJ78dO
r7qO2WGJrHXyCyZ0sf5yOg9zqOerMOZrJgwf7GJS8H4yO7RyXd8xofK6qi3m
mCt2fe5uzWNCOVWnz18xDz3TF95TgPVR/6fx4P/nZzapZRXi/Z/ptG3///wu
VlYSn5gwKonicA3H69CPwVDvMiZsFfH8vR3H00Hd7V3vVyYsZufUU3H8Q2Pn
uw5XM2FSqZViF+ZMviDm2+9M+Ojc/eFqnK/hshjLwCYmVO01tP+J8yuyRSZ0
pJUJ3zffFxdMwvm7k/XWuBPHJ75jcCfWh5MJEtrwiwkZddSpX//rKX//togB
JvzD95z8//fO7NW1FlPDTEgRoUzVYf2N9Pe+Kf3LhIsLT2gLZeL19Zw7FaaZ
kPeTzwJl/f977rTgAx4TXqh8wbiJ71dOV4Us7EhhOOE35r7vFX5eUElQQEwY
ztjxzj/4gJ93zlO5wBaGFnFT5vX5+PnaXaebFgtD34mX32VwfTk9Mn6dtlwY
Unj9TyZw/Y1u9jI/sFkYsn6eCj1cTSCx27TgHHlhqP5jarPQd1xvf8NfSW4V
hmde1FIaf2B/+/Ex/6C6MOQf1E2LbybQ2KHSnFu6wlDPY9OnZtwPxhxZjEpL
YVh8Y3/iT4JEpw36nXg2wlAq/vA+HRqJqlRQ/SY7YZj0lRGfzo/9Cc8xJdBJ
GNLrPF7GiJLILvjLHugpDNt+rGP9XU6izmS/66+ihOFW+cA2Oy0SVbeMEDGl
wpCnJaKm50sibc6nc2XlwvDLp0i9t/h+nJkU+22yUhi68FvZyOD7c8i5A48N
fwjDyQhlAdYdEulOPYXCXcJwPI9aqPDkf391ytePKwyPyuxyNi0jUfb+r7Nn
tojAqt7Uc5kSuL/bKW6j/BOBFjdCeVpGVDQq/myv7bQIVF2kpZ5lSkXTectN
SnkiMNqzKl7agooEhIW8bpGi8Hvx+8JpeyqSe9lbyBYThb26CfpP/ajo0kzM
YZnNovD2kdTA0gwq4guh2e6xFIXnOEY5k3w0JKDs5f7MRhR+/lWvr0mnIVbr
xE0BO1G40aN/kY8QDa2V70yvdBKFLV3Ws3MSNKT7PW/MyEsUBl15H9knS0Nh
ki5eZ+6LwocpmgVGx2hIMqM58malKL6vvw4PfEpDF2vju5/XiML1utqCiuk0
9IVnpdRYKwrVsjecaMimocuHBqs2NovCkox9p1bm0lDDME+gvE8U6q5dnx1V
TkPyi9GJiX5RSIiWn5KrpqFA7evPJIfx+4RWfyqspaFtEcw95/+IwrLt2tm9
rTQU/q4mMnJSFIpwSza5dtFQb0dU94cZUVj01PcIXx8NafGbKP2cFYXyN6xX
hmD/eOCBCKTzicGC6g7O8AgNuWe6nI0hxOCF1q/qZ/DnSeh7uDxFDObVjR1r
7aUh7u/oNmO6GKSp9lwtxO9L01jp+YwpBmcz0x864/3ytyi83bdMDFLMkgTM
8PlVRu+0tUqKwYUjXYrPE2nIgvKXekFaDKItPCG+WBrK3Zxr+HAl5inp7pi7
NHTWC473rxODjbvm5N740tDn5QZyt7aKwd5dfhreJjR0zeJiUuVBMQjLNtpa
4/z8nZeOuXZYDArto4vTcP7OxJXe0dAXgwFyM9uScX4PNEv7Pz0qBmVj86ea
/1ER61jpaW8TMfjrYpKnbCcVJe6VXr7lrBiMN9jFNHxNRfnyn++HBohB3h1G
Qz3W29TssrCD78Xg/AuFF4sfU9DGD/cflsuIQ60EKU/aChKpWn/SFw8Wh5a3
g3MWP+FDKFZiacU/cZgilrn2oMg8Ry+ubbXVlDg0f6MdFE7Oc1rinm6enhaH
n/hupdZNznEm41WBzKw4/PFW2N25Y46z5bHRGS+SBSXmRcprX8xxYp7eey0n
yoLlLf63XY/NcVyzJQzCNrJg54OW47UJsxzyeZvpWlkW7AI3N6KoWU7E86c2
7zezoMbWpq2vg2c56S9UL/fKs2DAvkX+OZdmOV05Rgk7VFnwslrcjNC+WY7e
u3vDwztZMIorX2c4weO0vjs1dW0XC958ld/86RePcy53HSG5hwWfpOeH7mzj
ca6/f7NIdx8L/hPJe2ZcxuOw8rxXtO5nwZ/r5c6P5fM4iXl7Nl48yIJrNyxE
RL3icT58qNOM12NBzVHhvNl4Hmffx7g9KkdY8K3b2pWFUTxO/Udb/XIDFtQJ
M3h6O4THscnfYmJhyIKLVu/xOe/H40zk/7OaPMaCtdOWrQbuPI5fQb5DqDEL
fskumdjlwOMIc264rznBgpce7f6304rHieEc9ss1YcFTr9yWHjrB42xEEiF6
J1nQy/GHY48Jj6O1zPZBqxkLLnvz26PQjMcxuPg6xd6cBaOzNu5+cJrHuSpj
WBxoyYIoUGa5oi2PUxF0e7bgLAtmeGY/43fhcS4YCDkruLIg/BrXefI6jxOY
buqd78aCJ1+4W3wKxO+npN866MGCmYeWhm4I5nFK3uxLPXsVxy86qasujMdZ
LBnYleCH3xcnY90czePkdfMdEwtjQcOHlHf+z3icKs0jVvHhLHhu6UprtzQe
pycqwUXuNgueHnBNtczgcZh7tcP2RbKg1GQOd+1zHud0hudnv4csyKgJfqz/
lsdxpX79IfII5+evI4+Ry+MEnZLsiY3FepLL7ct9z+PkiL5fyE1gwfqwdkcq
zhfVdVJ9/CkL1mUMrtMp5nGWVu7Z6/uMBW/nnJooKOFxtqy/ZyScxoJ3kOl+
lc88jnGj8sVNmSz49eP3SP4vPE6q1oUMyxwWXHw14cbxKh7n4z30fvQVC87d
V77zoJrH+TYiWub9hgXZThdXf6/hcbiJ2T8f5rJgcdeBSvlaHucwbWj59wK8
X/MCGN6A1/t9bdYfsaCic7tqWiOPQ1ZItSgVsaDs8kTjD008Tu7dgw/ufGJB
m5mDSz+1YP2597jvLGXB6vzedx9beRxHE0+j8TIWrNDz88vAel2zKoNlUMGC
86mGIU4dPI4XZdc4XxUL3pC1K9fp5HEa+pqrX1Rj/Q+qKIl08TihWYJhYrVY
r1cGXUK6eZy+20nn0Q8WDN3btk+zh8fZ6br9gEs9zv/J+3t6ME9ut2fUNOF4
2r3MWNrL4xxZQfb5trDgjro9i1IwZxAxJQptLPjQSShRto/HofcqPeloZ0Gj
k+l6KZgtyr74R3Sy4BrjmpXLcL3lZVhagG58/ueK7GuYJSJmtEd7WNDq8PWN
PzG7XLyzPKGXBe89Dz6t9ZvHKTfaNKv3iwW5w9TcW5hlNAqb53+zIP0DR+k7
Zl9pk/fZAyzYYxNcIdrP4zQvjN03H2LBl/XbgnZjVukJchcZYcHIh0k2LpjD
P68yKhhlQZn6TMtIzP1pucpO4yzobqTpm4V5d9gR1oo/LOgUoJFfgDne5fdY
5V8W5Dv/QKoU87ShX7X3JAsaF+rFfMZsqLY0e8s0C0q3ndDIx5wt+SK0bYYF
/T/mTqdj5p/fez6Mh/sZzb0xArNVV8f+HXMs6MMf33gec36Jx8bheayP/F0z