-
Notifications
You must be signed in to change notification settings - Fork 4
/
Four_intrinsic.nb
4051 lines (4025 loc) · 227 KB
/
Four_intrinsic.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 231984, 4042]
NotebookOptionsPosition[ 230955, 4001]
NotebookOutlinePosition[ 231310, 4017]
CellTagsIndexPosition[ 231267, 4014]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "\[Pi]"}], "-",
RowBox[{"2", "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"t1_", ",", "t2_", ",", "t3_", ",", "k1_", ",", "k2_"}], "]"}], ":=",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
"0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", " ", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0"}],
"}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "0.8"}], ",",
RowBox[{"t2", "=", "1.0"}], ",",
RowBox[{"t3", "=", "0.01"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",",
RowBox[{"\[ImaginaryI]", "*", "t3"}], ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "0", ",", "1", ",", "2"}], "}"}], ",",
"None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "\[CapitalChi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "\[CapitalMu]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "\[CapitalSigma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "M"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<k\>\"", ",", "\"\<Energy(a.u.)\>\""}], "}"}]}]}], "]"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.663993571366404*^9, 3.663993590058371*^9}, {
3.66399401578968*^9, 3.6639940894527817`*^9}, {3.663995022136455*^9,
3.6639955969860163`*^9}, {3.663995692527031*^9, 3.663995704055623*^9}, {
3.663995785367334*^9, 3.663995803035474*^9}, {3.663995835383677*^9,
3.6639958358628597`*^9}, {3.6639958807358627`*^9,
3.6639958985663853`*^9}, {3.663995951754054*^9, 3.663995956016487*^9}, {
3.6639960188329487`*^9, 3.6639960239380913`*^9}, {3.663996935280458*^9,
3.663996935901042*^9}, {3.6639969974878407`*^9, 3.663997030647575*^9}, {
3.6639977532180023`*^9, 3.663997773531485*^9}, {3.6639980163757753`*^9,
3.66399804235259*^9}, {3.663998091069737*^9, 3.6639981232724*^9}, {
3.665101263249219*^9, 3.665101264405364*^9}, {3.6651013075922117`*^9,
3.6651013172750673`*^9}, {3.665101379279265*^9, 3.665101381402153*^9}, {
3.665101516629163*^9, 3.6651015169526587`*^9}, {3.665101555982828*^9,
3.665101561370186*^9}, {3.665112758981038*^9, 3.665112816017886*^9}, {
3.66521243191297*^9, 3.665212536400692*^9}, {3.665212581902872*^9,
3.665212604675605*^9}, {3.665212639897777*^9, 3.665212643168523*^9},
3.665212685997922*^9, {3.6652127928952017`*^9, 3.6652128501979713`*^9}, {
3.66521397755891*^9, 3.665214121817357*^9}, {3.665214245317013*^9,
3.6652142855679493`*^9}, {3.665214415555603*^9, 3.6652144637890987`*^9}, {
3.665218189315523*^9, 3.665218241394261*^9}, {3.665222162695239*^9,
3.665222163615902*^9}, {3.665222260047443*^9, 3.665222289244589*^9}, {
3.666097887198184*^9, 3.666097890043787*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV2nk8VF8bAPBhbowlM4wkpchSyVqUIudEIanQZkt2kpBKWVrQRpKtQpKQ
RJY2CTk3FEko/bKkElmyz5AsM9d7Xn/w+X6uueec53nOuffMvYqu/jYegjQa
7R/+9f+/d8+5Cum4hxpxf4VIF5pxULr98OaDCnbAJ1JV8CV2+67oQAWFI4A0
sP/wCXvdxqYs0bZAsHp5aCCFfdrMTmKBQjAwXXNpztCcgyoO9pyZ9zoPcu8w
fK9jCzwv4fBaI8BJPdUPY9jKFXOqs3OXgKlntKL7Dg4yrYGO/1ZEgXseXsGD
2N4Nl+InTWKAva7fjwgLDrr2pf4dx+sGEL307pDGTg46OCp87t/2eBActUBo
ENs7ME92qjUBzGUq9ZdaclDwlOWzySNJYGYiQCp1FwdFh4ztmpi7CRyar6Ze
381BBRG6keMrUkCsUp7kYysOqhRqlR97kgrOb/+1ttWag5qjg0tHTNKAtbb8
jPReDuImVI4Met0D386ZSbzfz0ER17RrJsMywM91G6PAQXz+j+GSk9vvg/Or
Cfn3thyUZq38mNuaCZzuCvAXOXJQduKpGU5GFtho5BHefgi3/987U86RbBBY
2h5bfBi3b3fk19jcA1Ba0F+a4sZBv1wKZUZWPAIaafqnHXw5aDBr3m144BEY
vbzIv9IP96fX6snQkzzwfXjff3rHOYjwmdg5aPIYPHbPPugaxEGqgfrh/V5F
YGZT6Z/n4Rwk27HN64RsMVC9WytReZGDloWOLJwIKwbPH59y6LyC8/HayIG7
/QnYsCm8wDaWgzZs/fV3vPUp6Jkxum2dxkGbu6PSAgyfgSdT270WZHCQUeQ6
k/GMZ+Btqn9hYxYHmb2NjBs78hx8zlO7dz+fg2x3qK4dnXsB5oIDPc0rOCjU
+qjz0IpX4FTVrWfXfnEQFblhyc+YV2DkP2UDqo+DLpQIfP488wroTAZEXh3m
oItLk03KWsrAPSvZ0J5/HBTbW6MadaUCqJ/PsX3M5KKM4OUjqmMI6IaOhOw0
4SLJr5M2CzVJoJW0M17Ogots/O21rriTQKnSu5FnxUX/3VcZCPlEAtYdtu2M
Exd1CFXYuea/AfUyF1BdKBf1NA8Y6hyuBnUGh3ICSrlI2Wf3kvyb1eDzteAo
M5KLPOnP/yo3VANOulPf2jouGtA7Xyi7qQYsn2MWLW3jouHURQo09luQL3pb
Lnaai6bcjelN796B893lH4MMJpDIzJ33vpr14KbubLp97QTSv9IeYuFSD8Rm
hbSfN00g70WL1Vcn1QO5PtAl2TaB3ukkxPbM1AObo9GzbQMT6KLP1b32bz+A
9FNl7+NFJxGt8+R3M8ePQMXb+c/13ZMo9GfOGcntzeC54t+dX1on0fGq8zHD
gS0gM7X5Y+DgX6SZnfjpeWE7KDJXi7w08g/17vZe9lO/C9T+N6C+/scMkn7n
q3xuexfI1EhB33/PIOMtx9XlbbrAkbKspsihGZSxNsTQ4WgXkG5tOVQ1PYMc
GTGOrXe7QLTwwlEGexZ9flOU1iT4CyiZzNS9Mp1Flbr/lpENv0Dry8G81LxZ
NJI/p3y4/Re410v4FRfPomVKNA2q9xf4ccnd603JLAqWFNliOP8LKCcs/ful
ahbpjsodKtXpBg8+ANOqjlmU99DobvGtbsCOXLXkucgcui13Wf6+cw8gne5M
9bvNoamexoe7/XpA+F5n4uuRObSvYPE6XmgPkLH7rlXpP4ek4CPTg7d7gHvp
ZGtY6ByK8WjwX9jYAxS1ZfSeJcyhC8VSVcEGv8HCv9cDBck55G16z9NGphdI
OpUqL5fhoXfMgfF5pV5wLa5pm+VSHlJp1w4t0OkFBxbnmZ9U4KHuo1U3GLt6
wensTX+fqPGQY3xvaWVkL8jQ2P+ix4iHrDrXiq3l9ILJGJ3TKzx5aFNgaRG9
oQ9I5/4sHynioeZ5A6fj7X0g9tbVfvichzyvI/GffX1AtfqLYGwpDyXkvjtS
JtAPBiJD6TJveGjwxxel4xv7Qe7+82LfP/FQ2k7O7R+Z/UBvmb+OKZeHKGW1
C6+CB8ADW6b8WU0+SnpaoLnqygCo87wlJr6Oj9SgzvekpAEwITf1LkmPjw44
6G8OKBoAniv9MxIN+ago3nRStXcAbJKk15ha8JEz5eqdZPUH3Nw5KBDhzkfV
rXes/FcNAnU/PyfTJHx+1/2Tf9cPAg+Ztnvfb/GR54hEchgcBNVDo+7+KXwk
So/4GWU3CPLXNZ6OSOcjK01vv+xrg2CzlGmxZy4f/bioG9M+Ngju3FMaVy3n
o2LmqJYzbxCk2Mmv8XzNRxGpD1v6GEPgY5jI93uIj1SK5ZZOKg6BS5qvngnW
8JHvN1qexL4hcCHnjcTlBj6a1flYa1I6BFYrKEtFdvJRQ8Xlo/U1Q8CtgHhz
5AcfpZtBpvWnIWAxE9Bj0cVHWw89O+A0OAS8GmE4r4ePrl5N6T2zbBhotFov
kh/iI5mfHvTCC8Ng/r9F5nun+WjgyIqHuteHQYqVHu3XDB+VTbZZlKcMA+2q
typH5vjokKhlQt3TYRCc+POlN8VH2XrrFHt+D4MFenWjygSFdGIoI9kdI+Bf
ibxrvASF1h3huRccGAHJgvtifzIppGs6G23sPgLmtvivWiVJoQ20qa++50dA
sRb9XiabQoYnR/zevMCfD61LtZClkJH1UNKB6hFw+f5WFfclFAKaf8qGmkeA
1OQaudNyFDIe+C0kMzwCDvI0jKOWUcjcsTPdZ+UoKPr6ONJJgUIWmzpq5rVG
QX+iob2JIoV2yrQNJm0ZBc/a16corqTQ7uaWDch2FBi/PrWnXolCVgWfHPd5
joJC2t53ScoUso5uivhzYhQkLX6dbatCoX3bPjSyb4yCk1/9bzeoUuiA4vvJ
3LRRIN9omx+2ikIHqXdyRnmjQFefqaq6mkL2pVWe3m9HgezbjXs81lDI8SYZ
w/88CljfDvJnsQ8FVj5N6BoFATvuS0arUchZvYyqmBsF7U3LfZPWUshVpFTZ
RmQM/Dsj8ZSpTiG3vhcW/TJjwDEt/dBFbPfqZwFhymOgwPiJHxfbM+PJLcl1
YyBrlVqvnQaFvM8WVeSAMTD+apQswz5iX9BtsGsMTMn1CSzSpJDPxnzGJ/sx
MLx85qE3tq/0I01P7zFwzlLq2QtsP07OvrlTY2C2U16Jh+3fmB0SFzkGqHKR
aQMtCgXkZ2aoxOP2rrzVOYUdeDXjXVn6GNCJM25+iH3CI314z+MxoNl2oqUF
+6RxmlTvqzFgKr3bYAY7aEWqfkjtGHDNrxWW1abQad5tJ+Z/Y8CupE1fG/tM
+82L2d1jYAUttHErdkhJYt6m8THweEFenSV2aGJ8cyN/DNCmXFdZYxuVms09
WTAOIjSMem2xUY5pbJj4OFh59JZIEDa8uV3RjD0O/LqjObnYZOS255Jy42Do
wblUDvbWQBOzToVxcDvkJc1Kh0JVzsYdOavGwd50pxU12MZ7th47romP14WP
71pHoeotkGaoNw6qPaSPjWBvUweJQobj4LMYJyZzPYXeyhmpfjIeBx6rv5ke
06WQqciWV3d2jINdfRfidulR6N0/A0tPq3HAszjrZLKBQmZ9m39qHxwH16Ls
s3dvxPls+TJ85dA4qEtaF+agT6GLpN/sD7dxcHnZFm7IJgq9Sc1cdD1gHNhu
e3mJY0ChriuGSr+DxoHJ4/Qr5lsoRJ38qm1wdhwc63s8/sSIQgZ7RC3/RI2D
Wpmu0vKtuD4Ns+1g3DiQzr4w5WCC473GyOv2rXFw8Mc2W4ntFHpBD4zYnjUO
now7bHlkTiGt0vbS+xXjQCK4yOGFFZ4/D068m64aB/lHD1//bYPrJ2Hhlz3v
x4HzzDpDlf0UeuS7dYz/3zgYLGp50mFHISXFRyr2Y+Mg/eIMZLvjeEqYrH/y
dxys2SSZ/cET1/9cJ2TwxoF1mNjLpCMUuvsfy7GEwQEf2ZZhtv4UWhx9JkFq
JQfEHnC1zQrF68dpqYwjqzkgZ7eP1I9zeH66Py4gNTkgtflY3OoICsUbddX5
GXCAwFcph+GrFBKbMJuv38cBc/LO+WtvU2jeYbFv5BUOWGr9fZ9vCYWW73gS
3HGdA8KbPYWSyvB6tGHnFZ0kDnjY/cDrfSWFglnnM39mcICE6o0Cx1oKTdT0
tRmUcUDvWJa/YjuF+jVKtk8Oc8AxO7UuYp5CK88e81g7wQHJ2knED/o8cmxQ
vuQ6wwEf9P/qVDHmUbNPYk3zAi6IcStfmS81j8oeBpgULOcCyejW13Oq8yhG
ce1WTysuWBztpx1qPY90FmUYtj3jAo/X5hbSBfMolBe1viJkAlhJjqSoGNJI
YcmBI/vU/oItU/E2/poC5IKPC8zEXk+BDS3Ri+8y8R1AY4FvwvFp0HXSse3I
iCC5/JPLnW1npkFjcGB03LggadyyqH7q3DTQrVkl/WJCkIxuPbvKIWYarA+a
ePBvRpCU7drVrfRwGghl377qKkQnN3BGDr7onAbu/cIXPy6nkwFsTZM2sxlA
M87gDO6ik0mLuo9H754BjzXJ2jorOvly8a0Mw/0zADopbsreSyeppRQ/w3UG
aEqI9e+1o5PXlRtLj5ydAWcG+7becqeTeXp+mnNPZ4DtTdP4ByF0svdg4ZLl
y2eBje8u+d/ZdDLHll/lqDwLiltknEwf0klvO0vfO2qzYM5zwDnnEZ0ctB+s
lN04C5yDjuYeLqST44dU3dlWsyCR+VHx5Us6yXNLL2REzAKhwpaO6fd0kh0Q
azLROwuu7lmRSw7TyS8B34d1hnF7A4qwfZRO3jqufiuAOwt8Ga9Dx8bppOyJ
+oERahaIrnHskP5LJ5cHCcUOLJ4DRWEj8iZ8OqkWdq7t+445EO35gqGxkCC3
XvU7VlcwB6R3lovqrCVIuac/D8Y+nwP88rU2ShoEOfnNynhf+Rz4Kzf9QkqL
IHO01i/uqpsD4smbmgbWEaR46z/yX88cyIv+oh24mSC/qoRLr5LjAXHLiplp
c4Is2sOlhhV4wH1+KqvCgiCvBrv9ebqKB5SXPzp01pIgDT5urzTS44E85VO8
v3sIMuOkqPcBKx4Ya5JsqT5AkEerE8svXeaBC3G12z65EeS2ESJn53UemMmc
vuHhQZDLFwfFSSbxgK2s888pT4Js9rH1uHufBwgP/assH4LcICXPfFHBA8Zv
NcdXBBAkzSXH9TeXBzbXy90oDCXIm1SpiMlhPvDxqiGuxOHxrHrrd9ODD26D
HvOceIK8uOdTS/9RPih8OdpTlUCQgRl/7sac4QPHt8byk0kEudtYbt3XeD6w
vuaQsCGFIIUuh9ofqeGDNdVX9QzuE+TZwiuovJ4P8h5fqdDKxPH8mqgs8YkP
Gpe/S1LMIsjuVY9Hn37nA4XAVxv52QSJ3ndG8Kb4oKz/pVFSLkGeWWiUf2MN
BULOGkhsLSLIMT0LVrcWBTKotxdFiwnS0+nAKd0NFFjd0WX2CXtfkR9oN6bA
/ievnx54SpA61vdaVjpSgPaBLr31BUHmBufrn3KlgKXNbP8ktkLmy7u13hRY
KndZKKeEICUmmrx8T1Eg69fxlbRSghxMovFexFKgaptTU2IZQbq8Fndh3KRA
jEoFR6ecINt6Zd/Z36GAXOa440fsdxt04uYfUiC1h7mQV0GQmW0uyjveUOD8
p4pGfUSQSwT8ou7UUmBsj9O6N9hxa0JGRz5SYPLM3u+mJEGeC0koTeiggE/f
VYbFG4J0WFZt2TlBgZmQi0Va1bg/xzjcF7MUsP936HU+9hm0IuWGwDwIjy65
rVxDkLdcw3qNmfMgVW/tE/G3BKnyPO/aMpl5MJUwMhaK/XxBu87UsnmwOz50
th/7c67euUdq88Dzw77Aknd4fLNuypE688DxgNVP2VqCHN+ZUO+oPw+EFM4s
PoMtMTYqwzKdB21NZQPqdQRpoZdbFOQyD7YoHxQLeE+Q7Ze/7rfyngdHPKc+
lmJ7txG8Nf7zYEAS2VPYl0NdzL+HzYOC766fz9cT5KKPN0ZLIufBF13x1+XY
2csrk+Ki50Gsa+jxSeyqN3K/TJKxbfZvdPxAkNbsHVfk782Ddr1k82vYXe6n
Nf49mAe+OtZKL7H9Sx60ND+eByXH/Gt/YlPCX4Lzns2D53t6dBc0EOR1O0GF
i2XzgDyTfnQV9rJ87XeH3uB4vUs8aoqdz3Py3Vg3D+T3vtR1xd68+7qUZNM8
OHCSeheC/f5eeengf/Ngb8XhlXHYtpw/TjWd80B25rNpJnafseyC9J55kKFr
rfsE+1SSaf7pwXlQ+PzLYAU20XfS2pozD7pnbX3eYidszPqnNj0P7tR0PK3H
Voz6dJeYnwc8Uduahv+ff2RecUyQBnsEm9M/YCvILP7rIESD3GUmxrXY/Uaa
dXUiNBiy4Fkhwi702n5HbyEN3sxe+fs5dlCco18miwaXLb/VnYNt9OrEVqY0
DZZ9ksq7ib2gO1o6bDENjtnf2xyO3SCa2T8gR4Mr4k2SjmAnrX9Vtn85DaZf
Ybzcje3o2Hy9SpEGG69PZ2pjK13qd9ZSocGVWitsmdiDBdT6tNU0uHF91NdB
HP+nXxcJi6jToGD6tuXV2CHz6h2ntGiwtshZKxl76+ptBd3raNCld0TEB7s5
OHBvxSYa9PiRtZTATs6MUl2zBffnw4RNA66Hwx8yZm5CGjyjSd8Xjz26rOme
vxkNjuyseCaJXbK9L7DTggalltyW+ojr7awff/uO3TRoG5locAlbnFw7vHI/
DSbznYeHcP12p1jXnbelwQNl5//dwX554nR2pwMNcpa2D5pju66qdrzlise3
uzQ6Bdf/y1j7jyIBNFja3vx0EZ4vMd4XHnmeoEHE8qAX4PnkapxzqTqIBqsW
79yyFVt8irPl7FmcL5PCY854froeiiocj6ZBe8Nzb4OrCFJ/Y1H0rlgafD25
3WMaz/eFkv955sXToD54M3YCu7RGYYV7Mg2qPUt564LXh4XqpTdaH9CgyPrL
IbKV+PhsX0AlSYNG95s3c/F6FftFfNfSGhqUGUq9B7DdCtetOVNLg6mtldyo
l3j+up77pdNIg4P9qh6L8Hrn9n6RzYNvOD6PjSOEn+HjydvWx0zR4JTY3E/b
xwT5+7gP888MPl+Uyq5T+QT5amfc0HY+DXZwIwti8wjSff5b1jxdACYpGO0o
xet1mecJ6ROSAjAGJU/14fXcQy/zr526ANR8ExP2NI0go2MXMc9qCUDBhFN/
iu/geu2/ujpjnQC0psk/f5xKkFMp/g59+gJQUYHhnpaMr5eU4ZvA7QKw4OAa
fUd8vcmrbY255iQA06kcutM1gmxU2JlT6CIAK9mfT6+LJkhucCX65C4Ap68V
7yGi8PVV/QF38VEBuFtmtXrGZVzfcYG22acFIE09Pas0HNeP3ULl13EC8G08
d9j3NEFKPbuwpStRAG67vb1pcRC+fopPHqDfFoBt9qbLyJMEeb6yI2rHXTze
Ut1pRiBBspRyx/57JAB1n25+G+pLkOuGjctHqwSg8ol1Sn3OBHn63Bkbhb8C
UFT1Z9YnM4JcPRwmfmVaAAo75yoJm+Lrh134u5E5AXiixL1w0zZcD3rRm8sF
BSFnrqP/JiTI6aE7Kw+wBKHTiqUCazfh+WOHuNfWCsKLmuGX6tbg64WuUOI/
F0F47+TZ6a8MgtTMFN3l5CEIXfIvnC0SIsgfTKbwW29BSN4QULtEECQYWhya
4C8Izd/E8FfR8P1A5ho3jbOCsG1fQf7Of3QygrlrvVuyIHx5SkxKvJdOXhpM
bGlsFISPug4PnKmkkxdbe+vnPglCFUU1CaUK7JqNVav/E4S0ULKt/hX+fPq3
4ohvglDIN8qZ/YJOnrNRit0wIAjFz5+3vZpPJ4PKnpqnC9Bhx4xIl2Ayvj+M
/vT6mC4dto8t9DH2p5OWasxc8VQ6zLhw9/X6xfj+s2ADaelCQDd610TPXkGy
fm8W7+SmBbDh4E+Nx54CJPnRP0adLgSNo7tiU8JppK40FLstJASLkyxrGs7S
yFx7VrSAqBA8nF4cKhBCI2/0F1/5yhKCMuzq+/6BNNJJgBtxYbkQ9Bk7oO7s
RiN5uieDv2wSgmeUJMrubqeRm9LOeIYFCMHRTfstRsVo5ONu896+E0Kwx+yM
rS+DRiqsWeJufVoIoh562QhBIxklr1xUzwlB3VtOp//OzaO2plnH5mtC0GKH
2NbzXfMoiH52r/JDITi7X+eASP48euoTDhu+C8Hu0EEkaDaPdF2d61R/CUGd
ZE+ZjVvnUYkdsAr/LQTVjo2GBRnMo1fm/MMbhoSg1yq4bLH2PCJVg89nTOPx
i1Yu/b1kHn3sDqg8yRaGmXVbLD6N4f1gxx7TJhlhKG1X+ef9IIWaP2k2rpET
hg/+E9Ru7qXQF3L4+w8FYahKvbEV6qRQR7o331xTGAqXr3si/55CA/bOhvI7
hKFj2TLushwK+diAmtOWwpBQkrpGz6TQ8I7llp/3CMPhrPfOs3cpNKbf6XDl
gDAsnhl3WXKLQlMytqEcN2H44nqKkOIVvJ+V2Ei39MKfv1P9+XokhWYWyFzL
8RGGygLGUuIXKMSbbEl1OC4MC9i+57cEU4jesqfs7Tlh+GqRotAZX7zfrtc0
VojA54867HYS70eFqhbWh1wShvX9H/ZE4v2q6JMP7VoxwlDhQ69duzOFYnLz
XKJvCMPFewZeKjhRaGFG1J/fCcLwtHWpSqgDhVg3zGZSUoSh6BOTvCMHKJRw
WTV8Mk0YetoI8fh7KSR9boHIngxhGDiZ2vLAGu93j1XLEg9xeyUmEdq78P50
J9D3ey4MteMMnuvi/fnom6P82JfCMLdX++hlvH9H+slVRWXCsG/l5vo/eH/v
rMqx5JA4vhFPa3rx/l/7rryUVI0wvHo64sK5LRQSkLZoXVcrDHk5K1XWGFIo
UyDL5eRHYehu893l+SYKBZ5pUr3ZLAwVZYukb+pTyGRsbuhFizAUUyvvvbIR
99dz9ZOvX4VhaMmlrpgNFPrduS/oX7sw/FXwmZmtR6EXe8MNZL8Lw/4/WWc/
6lLocn0BbVOXMNQ6uXG9CPaBrR1v7XqEodDIgk0H11NoVanQtZA+3D77za2X
6yg0rbne6s4fPP5jNnvVsOseHF5UMSwMTyzqOFmkQ6GUZTEdnWPCcCCrgGaG
7ZNYeo/PFYZBJgfnxrUptFm01335lDD81p3kXYAtFi6pBmaEYV7MwZ1h2J3/
towd5gnD591VDw5hP/bzeX5hXhhuf60e/P/vk8J6bwXfF2TAtcfrtu7B3uVY
bVS1gAFFfSYrzLCXt4zRexgM+NXiY9pm7NEdy97TxRlQZmz/r1XYlaR5rDKT
AYd9EqKZ2Dc2ntq7XYoBCbGryRwtnJ/C+7Keixjw8r4tYo3Y2iqN3y/LMqDp
grLubGxa2mzmw6UMmMwWXhGE/UlqlXfdcgY8X6hJbsXOjNqr8UeRASu3GL4T
/v/3b7QLXBEVBrzvYqhTp4nzdfrxS7XVDOg7YSgQiS092ha2cy0DCi/YtUEf
+8U3HeHrOgz4RexHU7wGzo+NU0OBLu7P1kjdDdgH3kfHN25kQIUzF6gv6jgf
JT1LWUYMmNnZViWAXafB+qW9lQH5bNfXN9bifGQb5lhvY0Cjw/fkZbE3J9zU
TrRgwNTye0xZNTxfRKr+PtuF+3s/9T7eZ6Fv50fLvlgxoJDpqxQB7LBjZttl
DjJg/uiPii+rKGT5+4ToRnsGbLu1akAPW94ho+ngIQZkb18cEq+K42s+Y5fi
xoBNoWGfN6pQKBaprCjzZMC3IVtSIpQpdHiDze+OIwzY6GtYW6uE46mc77cs
gAFt7ybbbV2J4zPvGHkvjAE7zWMdOcsplBEt94d+AY+/uV6UJ4/Xh0Vtu70j
GTDudpkKDbtEfa+cTjQD/vtRmjkpR6HV9jueVN1mwJbZp2SsDF4veoUWr7rD
gJfW0TrdF1HoV0BN2LV0Bly8cqOnrjSFUq8A830PGLBn7m4dkqSQ+Au9n71P
cfuvbBqviFPIG05ssyhhwF8Nv4+sEaPQ2w/FeYWvGDBgwYLTNSIUOte9Nug0
yYAiQ679fUIUGmeuXCjSyIC1BXJrv9Pw+uojYaD+hwF/ph9OvjHBR9pTHzLi
hhlQfVN/aB2Hj66HRwn9HWPAH+0JrbNjfGSaTHx+PcWA7v36MzuH+aj07az3
HkIEWksemLj3m4/SFPpvBa4QgQtk9+kxv/DRdH427+tKEdggZNv68xMf7d/o
6mqgKgJt7rfNPGriI4nd3zUIDREok5hdpfaBjy6EttTc3CwC8x7In/zxho/c
vyJu6X4ReHm7YbdEIR+xftXf7LEVgR8i1JWy8/mofOg/fQlHEeglcqB6/SM+
khIYPufmKgLt/0tWMs7mI7RWVkzCXwT+VyJ8cmkqH8mFByi5XRWBgoevdJAX
+ejTWsV9C8tF4PPoW5u+7eejsA3q/zZWisD9x9Jvvrbho9VbN6a6vhGB6q9f
e6Tu4aNzB3Z1vawVgekOWz1MdvCReniwr+sX7N+5UzaGfHT166eLL0dEYNc6
L6kjinxkFB7xwkVBFD73OzAX1M9D/wzTXMKURCH36pfsih4eKp5+sfC2qiiE
O/LZ/J88pBTwx6NBXRSK2v/d5tfGQ4zDVjIbN4nCHnI/U+o9D7UYLj8tbiMK
VVmWbOdHPOQ9/Ur/ZaQoLFN5WLDMk4cUn7f8/nRZFOZMZ3yrcOGhDv+RuOEo
UehZlTl68BAP7epX+KMYJwq1YlTrzu3joXVfr6TEpInC+gQ/7xvGPMR/tn/W
5YUo/MpmOL2W56EEf065eL8oVH9UEb6veQ61gjTG0UFROJmxy76vfg4tY5nt
fz8iClNchg4Fvp1DD4vTRi9NisIFWutHzpTNoQqOmeK8gBhs9hxwhNlzqO9E
+mXOMjF4o6JRqixoDm0+s9P6q40Y/BpnIe25eA51X3jQd69SDFa1PbOXMZ9F
Qc13A2reiMHOtAfcl1tnkajCrdmBGjGoHV4yts9gFq1DlyXWfRCDol0rVoZr
zqJIvteGmlYxKF7t8zBTehYph6hdHhgXg2TNsS3iXTPI80SRio6SODyoIdYd
fWIGDXm8cq+6Ig7fHZRQbbk+jcaPSQl/dFkIGzRkwp8cmUKFOz7wPDUk4DLZ
fhdx00m09kfxsUvaEjBFRnmoaMskyg289SNrvQRcuN0oc7/eJMq840J2bZKA
whf3SecqT6KbI/8i7U0loCptS6QvfRKFxSuL7T4sAfvEnt2KfzOBLNrPLtGL
l4Dn/rmNuW2dQLXH3KL3JklAs93/am9umkDbBHfMHb8tARMOrWQ06Uwgo7XS
3wvvSsCRJw/TbVdOIJ2zeRmr8yTgzV3VxxvpE0hWsXXVsmoJmDNu0Btcx0V9
3tob6H8lYOmUxN10ey4ak3xo5jEtAT89ZDQV7OWi6TJ5u9o5Cag7ZeffZMlF
IgvFwq4JMuGc3yPbnYCL1J/0vmGzmND+6ZCClgoX6dk7tpxiM2GW5dCyb8u5
yIje8rtVhgnLU+oV02S5yGo/KZwmz4Sja66ecBLnohMzqbuU1zLhl6+PuUOT
HBSWKXn4siYTbo6/SpmNcdDFnVcDBnSY8M8NN43yPxx06+6pxMf6TGg2zPjQ
/4ODyrZateuaMmHhqRr1w/UcVD34bvDWDib81/QrJvgtBzUkbuFNWzJhGu+g
x2OSg773qq14vRf3R9axz+ElB9GiF3hsd2FCh6YVmr8fcJDI+rCgh+5MuKv+
dEDNfQ6S6uReEfFmwg6HG3de3+UgJc2uvI9+TDjj6Jo5e5ODTD+Xje8PY8JB
LSo8/QoH7QnVESw9z4Tn7i1et/0iB9kq57LlIplQ+pTuUSKcg3yCbm74EcWE
I5uFZBtCOOi6XECY520mlEss33PWH4+vuu96XSqOZ0KUZa8vB6X7Hrqnls6E
Sr30PncfDiqutKgazWbCTikr1zwPDnrl9abFKpcJVY4F8P3dOKiKpd/7NJ8J
rYfX51i6cNAXVxXG6ac4fppiNywO4fGLpS1pf8GEV7/kXT7qwEF9z6XWGrzC
8XM9MJdpx0H/hGi75xETqqu9b9p3AMenOOiwSzUT5kV4DDXu4yCG3UhA9Tsm
PNLDm3Pay0Fy+R2JVz4yofbY63OkFQcFtqR3FzUzYXXpYYMHezjo/ZyrTlsL
E16uWfs0bTcHKSivukBrZULOm+KPObs46IzlUOPqDiZMefgkuNqSg5pPFslb
f2fCMZpeFncnB62+e8I3uIsJP0sk6utiX3i7sfx+D85vecSaqxYc1DoyJ1Lf
h+PnpeI1uoODNGVIW+4fJrx+UfK3J/Zlo4sP5UaYMHWJYxLHnIN+eJpPGY8z
oR37/rFY7A03xLcfnWDC8FBRry3YsS+bExOncH5jDgT//32t3p9J3eUzTDj8
qDP9/+9zGTLsdH7zmPCvbnxLCbZFsgQUorGgasXNRf9/HyzocYBXqgALPvg2
VUxiZ5KfYzXpLPja8IfvP+zGL7olVQQL7vtQeNgGtzc7cOv7ASEWpBSDCz9h
q/KniSFhFozLao05hftvI+mgfl6EBX0ayg2N8HjPqbzeyxZjwY4t6hLqOB6P
Nq0IfSjOghoDXCeA4/dlV3imgQQLMu5tTj2D40tz7XnfxGTBFKul+m04/upB
2zlukixYKyb92gnnyzb6oey0FAve4R9/JW6D51u6CIyRZsGFiVl13Ti/xU+P
einIsKACLyju136c/29aJeZLWFAshMd0tOcg3bH4751yLFiYqwXaHTnImT5J
HF/GgpvPD7EjDnNQ6drSvSkrWHBL+42fdrhefwO5UA1FFvQ2ljgT7c1BrH1h
mW9WsmCG5bmpP0c5yCsMcv6osCCvK2Jc/wQHJcRlyp5bxYLKbe1iaqc5qDKb
gFJrWLCn9uSOXaEcJPOxLnazOgu+GTDX1MDzzfiXWkmjBgtu2PINDl3lIL+/
Md9dtXB/c/V2/LjOQe/krdWvrWPBywEKNzySOYir82zvCl0WbFx+6dMsnt/L
TReFPtNjQa2pBlZtFged8mt//02fBesSd39eUMxBysjFSx2wIDOtT0vxAwdZ
tVTHkhC7JTbnxGe8fvWrlOwzZsGi9AOP+O04H8xB4ux2nN+yFOmXeP2KdA7M
/LiTBfWD7JKeinHRJLUsNXIXCz4z9vc4s4iLPO/Wxm/aw4K69HqTkBVcZNGx
LPyBDQtKTTX81tDlIql9tYfP2rHgb/eZuvXOXJRhtkxew4sFJyVOedx+g4/3
vZPu8WbB7fTyH1GNXHTx4nHxFB8WbKr0H8z6xkVeb97NEX4s+PXyw5QdU1yk
aXC8o/MkC97Xk23V15hArzXf3Y6JYMGx+76OeRkTSPNjwA3ji7i+HAauRBdN
oIyjS69MX2LBY3oF/AuVE+hibkCQexQe/9LQkILOCWS5cul+wzgW7FrdLTu2
ZBJ1LAqQGr6L629Q3zvs9iT6x1tyfecrXA+Pb7cL3/mLVpffTqlXloTartJr
eM9mkJ7b2z2SUZLwfFowbbELH5Fpi2Qb/krCrxVKodPnaOTuu98VXf9JQqm8
TBXjSzTy290Ha6enJaHqs/WqV6/RyKl0PaDMk4SZ/pXyIsk0UuP+fs8wQSko
s+580o9iGpn64OZzdaYU/HM4Ve6/XzTyZOEi6+urpeAmqeMjnVCAXE0uit7t
IAUlrnBjqrkCpOESj+RORyk4q2eTz/0nQFoHPs/xcZKCdZ/VsuT5AmSI8t7q
yy5SUEssRcZLWJBsuBrHq/SSgvG/FJprlwqSx63F/LVOSkGzo7eeVpoIkmXd
tH2s61JQe3H8+xNxgmSjgZVreqwU/Pzgj6jcTUGyJ+legHqcFDw9Y/O7PEWQ
FDczum6eiNtzKDnIzRQkD+eHvruQIgWNFteJqb0QJImTU/qcB1LwI0+SUd0m
SO5aMCz/uRL//2vr57HL6GTuQCQvnJSCbsUaonwFOinYsPSbTpUUfP7i97CH
Cp0sTdiZHP9WCgq0nrBapUknVyrkS1k34P59yNzvDejk1GYf4eZ2KTig2nn9
lzOdTA8YGP84KQVL9b/+zbxHJ6f3Xmg6OyUFY0/WLzicRSf3bpQt1JiWghdD
At0XPaSTDMrs6PU53N6K/4SOF9LJwGsPey0F2VB4aFtRTwWdNMvx7PjAZEP7
GDH2izY6Of7td/V7NTYs61/SyRMjSO45pTeO6mz4LShZt0GCICcVXSvHNNiw
LY1z9JYkQU57/SxdpMOG5rL3A5cuJkjaZHuBy0Y23KN3lOxXJEiWeNPtGRM2
PHAgwPvqBoKUKlp4M2Y7G0oJdq1ZsIkgpW0sE1aYsaFJU3tpmAFByia/j9lu
wYZeem4GjpAgFZRrwuOt2DB5qejLzh0EqW346uiaQ2z4tO3Rk24Hglz38593
hRMbTmfptoo5EaRuxAbPPc5seNhqZbmWM0Hq1z1zPuXGhh2uuWVe7gQJ9xXu
f3OEDbsqvC4k+xKklW8WsAtiw8wRWT9eKEHaMLsNh0+z4SQRv+jTWYLc91Rh
8/lgNrxcEuCXcZ4gbafv6j4Iw+N1OKmjFUmQzheT13Ai2DBEymNAPJog/dOu
s6NusKG/6LfzdbcIskFAecwing3Fxq+tPplMkGpeZfXiiWwYHfNcdUkqQf7W
6Q+Pu8WG8Lyswp67+Py1cPz2XTYkRO6M+2QR5Av11g9299gwIsFF81c2jl/C
sYdL77Ohd9SecqscgvzomOp0L5sNbRzK0NJHBGnMnWjIyWfD1u8bDrsUEuS9
g9G53gVsWGESI5hZRJC8CoWLakVsmCucOPatmCBfXtllUPiUDQfCN2cbPCNI
dfmHj168YsOwaDuvvJcEGRWx5dLpcjYcNI42e1FKkH39Lc6bXrNh459m31ev
CPL+U5rsaxK3b5p4saCcIGXM7S/X1LKhc7nNt22IIE8UjLtcfo/bCwr/uoQk
yGapK1vMP7Dh8twF7AHsa9+fTX5oxOM38d8dUEWQA8YWzdeb2fBF7nVLtWqC
NM3tyt/zmQ3Vwk5Ef8emnVjo1vIfG+6Q1ajRekuQh9qyjG62smG2+X7UiF22
ZbPcwXY2TCoZmfZ8R5CnGF6fOjrZ8MvnLaqRtQT5+Rj/cdoPNsS3o0uE63A9
tSRedepiw8K6zh0XsQfvkqC7B8f3K+ni854gzegHl2b3sqFpRal5C3a298iU
Rz8bBq5Y7KtXT5CCjZGfV/1hw3P6eR/i/v98ab1c4Z9BNrxfaOLVi12RXByV
P8yGxbdLjdZ/IEg5ytTj2Cgbap/5ZR2CfdrtO9QaZ0M/k9SMMuwvdSeWcThs
GORQpTaJraMpOv10gg3XxxuOqzYQZGxiRsvJv2zorjw2boM9PL2haMM/PB+q
q9XPYO9w+hg9PY0d8zDrFnZOtZtn2Swb72eu7S/8//PDNbNbw3hs+NnQ1fj/
z/tcYuPkjSg2/B2l7PMeu3JCdWZ+ng1TG/7/Q5D/A7keojs=
"]],
LineBox[CompressedData["
1:eJwV2nk8lE0cAPCVY9e9LOVFIqIi0SGkZlIkUUiXotwq5ajchIocEdIhSlLk
TpEko9xCQm5h183u4ypyvqN/+nw/z+4z92/mN1bGysnEdg2JRNJhJ5FW/0/w
s+JStfHe7wp4Wl85M9Fzs3HN09JnQbCURm8xdrthqKu09CWwTV2NEHRhoh17
frziaXMFUisMxiNs98NnBTilPYHQ9657J1yZqOg0w2PF/hawiH8Vo3Odidg+
5E8utgYCs46hZMcbTCRXtCA/v3AXrAnp1Ku6yUS6ZfD87IYQMHr82expdyZy
qL0bNXMwHGSGp4hKeDJRWHNNxaR9JOCOvDpD9Wai0yyy36xOFHi7prdR3Rd/
3jVN7G9rNNh2c/3vqFtM5PnX4P3MpYdg1y/ZHRKBTBTqRRhOL8SCLQWRHU13
mCgzcNftiQ1PAVfdEPePUCYq5mpdT7yLA39GrpgLRjBRQ6hnAfNgPHhwRjvR
K4qJpqKLmaP2LwA5zpmt7gkTxRvLZUy1JoEi4yBjrbdMlBxz899k4ivwaAcR
l52J3/+rQnfyUjKY/EysaOfi95+91EcsvAZSEZt3lX1moj7LrLXMDW9BxO3X
elwNTDT6asV6fPgtWBEVf2L0C5c3YPRu7F0aSIupIWV3MBHH5emjowczAOS4
ujFpgInkXdUDhuyzgWVsyB31RSZSO9D3Z6I1Fxw4OrWNtZWFvI2vXBzb8Alo
LFp/swlioeXbav/1hH8CHU4ihZrhLOSfz9bY+O8TMNvheIcUzUJ3JJ4cLGwq
BJ+JUJuzCSwUMVAmHxJcBGTtPZt2vmchqtiDHp+ZIgAu+QR6F7BQtP65J86W
X0BAphoj+wsLPc6e5D6ztxj48or8665koURPKaY8gYBdr7eqQScLCbXMmPAr
l4DK2aaePz0sZOJktj3YpgQcVKt9HtbPQr9ebhr2+lkCvnBYhHkzWaiDq+is
VfpXMLE8zuG8zEKMhmEt1QuloF21WeWnJIHkLh/7Lz22FOwiy7UaSBPIjv3D
H7naUqDEnnbtoyyBhnffyhLTKAOKH8ICzbYSaDxOVJpEKwcMMUp/jxqBtu3y
XvQ8Ug72fZ/K6dAg0LW63rbpW+Wg8XDKywotAk2upEcNjZeDX8lhvNe1CfTX
Rpv9R0UFeLlF8PMmQwLtWU7p0VuqAD8/2F98d5xAHo/5i77trATv8tEZFRMC
LVS33chPrATOv1YMuU8TiLTdaTDBqwqI6FVcVr5IIO5/z6odlWvA9uVfmt7O
BFIPbvfSt6wB3sCDT9OVQA6i65Q2P6wBXYzH1MnrBKpQjY5g/KsBLtdSTuq5
E+jO5XsnzMq/A/e8u4qJvgT6MFfOoT73HZx4ZULI3SIQI4g9X1SxFsS7pUq8
8ieQ9is/sZ8PakFjh65m+G1cn64b3YfP1wGadpaWaAiBVC7nRmyKrAP7jPxm
HUIJdGGOAOzf6sD1sB/SH8MIVCxyJalYoR6kb2vfdTCCQN6Glva7p+tBjOaY
+/oY7J43HkI6DeBgXrvE5DMCRb/RMfa3aAD/ynKPzsUTKO1q/xbCvQH078j0
WUggUMeCTGdtWgM4WS606+8L3H6xhH33qD/B7gzr9egV7m+jmDUrnT8BWSc4
PiuNQAJiOzqv/vkJfirxPPZLJ5B8T8P7LoFGEGt6Mu1oBoFOXhWwLTzQCB6J
aJt2Z+L+CAmpvJnSCNLKh3b05hDI5dut8HHXJsBw6KM55RNoTuhhZmdYE+Ci
E/a0jwTys0ytr0luAsPG+Rl52OGkn9S3LdgL/MozBQRK3b8x1lazGRxIu8Bn
9plAvYVlCb/ZfoGHZYcDGxCB7Hnai+vEfwHhHSHDp0sIxDrL7Cna+QscMVT5
2o29OCe68ZntL+A+Hdbf/5VAYnvs35yu/gVc8idT+koJZPSeO7vhQQsQ5uw+
F1dJoNY1Ug3obQuQvRJVw1tFIAuTHZNZ31qA2esiig+246TZzvszLaBubT/X
2WoC3due8fHImVbwyl35Pud3AqH0YyXfNrQBDxpXhFI9gZSTY35+yGoH55K6
i2ubCCTyRGW2pLodgJUnS/LNeL6G1UnW9bcDs8Xgi/7YVdfJDgPiHWDdVadE
lV8EsjrovSwa3AFO61RaBbcQKJZupeh+oRN8/NIWRW0nkE/LitFtr05Q2ysW
ZIFtVRPvFhnbCVjjJ+vSsZVzW76mfO8EX8qeWRzqwO8P0D/TtqcLcA89qb/a
iftHesddDWo3EGtybnzVTSC6yI80HcVucL3ZnGsYu5ri2GCs2w3oPe+yFX8T
6NHEa4nLPt3Aee7XpXfYKiX/5cYNd4OIXoXM/B4CWV9g61ko+Q0qGYzfb/sI
NHDMQbJHvRe4PYmf1RrA7a9wlPPT6QU3S7bvc8LW3ueitN6kF7zKnVZ5iZ2o
6KV17koviA+3kucYJNB5Svj51oReMH/I8UIFduPX7Pgfa/rARy2+D1rDeH3s
mpUsqe0DCr+n4v+MEoiZviB3ob0P2OWe490wRiBJWdK25YE+0Cgxr6WH7SnE
vU9rpQ9kCjeNPcXexRI3L1ClgwoX27ua43i9pOxPyHlEBzlnjPldmAR6LB60
/uVFBmCX2gTzCbw+GPUpx64xgKz0nbpObNPMdTsWvRng6WntjWwTBBKGb3VP
P2aAqQ/mskexw21rnfjrGeDelFZEF7Z/jvA3z739QOwg3eTPJI43ui/sTNYO
gCe25dmkGRxvBIcnVmQHAH9qdOUG7E3tKt6ZqgNgWVg4Zz82/cq3SIrhAIC5
bDPe2OejBgqKbw+AnkVbwxlsoy5FXsXJAZDPbejS9YdAGq4F2ey1g2CKppoW
NkughpW9Fi7tg8Bk+k1hMrbdfcTXMzgIqqLCk75gR6dWXCpkGwL/QsT+sbBH
fzfLuuwZAqdEVcqOzxEo/ujk499JQ2Be9tkw9z8C7Wi/oWuQMwQeVej7SGNX
2c3NfPoyBOgyf4fVsGcCVoxj24YAx3y0oTW2YQE/n4HAMOiQpOkWYi/LbfX/
5DkMxD+d5rCcJ9DD3ExlheBhEKSSoXITeytU7X74cBiwNUjsCcE+dU5d0zl7
GFTJ3mvMwc6O0p2RHxgGPuybdJaxLy5bOTw0GgGegnNy0QsEKm19ZuSkMAqk
Bq+tf76I3291cubPzlFQtOtLXAa2HVPgiQ8cBep2cK4Qm4c9sCfk7Ciwr1s8
0YptpOxwLTlsFOxsGYkQWCLQ7zu7wtuJUSCkIbDOHTtHkLX94uIo8GbKxd3G
DoxLaRqkjIHPJWgpEntTjrjEjMwYSMmNskvFduwkpQmYjoFzv6moFXteta7y
YMEYkCvzj1BZJlBtUdCVmrIxoOYQJLEX+/lhKGj8cwy0uOuE6GAfMH9/ymJ0
DOwym+cyw7537+mAh+Q44Km4ExaAvbbHlj3Lfxz8vST8uQZ7+NKGlF33x8GB
wgrTJuzCmTb9z0/HwZ81p390YpvzGERX5Y4DHxlh+3Hs5N07ZBj942D3KSkZ
vhUCqYYv7xc7wgTFQxUlOtg7Li3aZJ5igjEjOGuAvUt3PlTbhgnequ3mNsVW
I/1tcbzFBILBj5AlttYN5rWveUzwZ+MZN2/s/cZjD0+VMsGm7Pp7AdhAeaRw
rIEJ9uVVuwVjaw/3c60dZ4LWEaOBaGy9813PL29kgT5qEV8qtr5GR9nKdhaI
qbu2kIF9dG3b6MN9LMCIySh/h32soUkNnWGBXyPfxwuxjTJ/nje1YwHNL1lH
ELZx6I/AkessoLpxQ2Aptumh7/W0SPz9zrS737FPyVTPpMbj9++rNPqBfXq5
Qnx/GgvAo9dnG7HNCr7ZOZSzgDj0aW3HPh9bEr7UyALm7B3Ubmxz1+Lc6F4W
4FSs3tSLfVGpcLlogQVUNprTB7CtuAvkTLgJUPpyTegwtvVgnv7QWgLPT03+
MWyb0vfOPnIE3t+5HJnYdonvHgntIMCDAZs3BLaDb3bRG0CAjs2niyaxL5ll
0vcaEsD2QHfmNPblPemUn2YE+GY/6/UH21HkrbKdAwFafryWncW+NvnGdOEm
ATTfDqfMYTvVJ3s9uE2ArRtKyPPYzulJiZuiCJBxRungArbrvcSKwucEuOOx
zWwR+7rt8/HjGQQ4klBqsIR9QzteeOATAUL6WOLL2G4b4tS9KglQdi67bNXu
i48tBH8RwFGKU38F26M99k4ynQBzeybSVu2VH5OmMUEAeq7z0Kq9Y6Ia6pcI
UBIbtLLq/QWHF95xTgC98eWl1f5Bb3QjfPgmwDrzTc0vsGGsjsxh2gQo5Cyp
FMcuuX3og5D4BOh4Tf19fnW9uB483CU9AXjnHknZ4fX27aJ2xxuFCRC0STBG
Da9v7eMHrrooT4ADZU6H63H8KN0HSVq7J8Cbi0NHtuH4dEgJxHBpTQB6THva
CRwPy8X3y//UngAhqZ0+B3B81eXe9+nZkQlQVJ/T/HcKx+/ZvQZ2RhNgC12n
+jqO94cHNXtUTk8Aw9KM6wV4P7Frah4PNp8Ap3ppvXN4v7pTcm3+t/UEGLff
eJWC97OvcUmi950ngPNNDaNYvH/2BmvJ9rtNgEtnUruF8X67fKNFZa/vBFho
Cpi/gPfzvcd5DEZCJoCE9JzlpUY8P7WSz8IHEyBTnTKxCZ8/PLbst3/8aAKo
yFg8zMXnlTx210CdVxOA2+puvhY+H20vaC94WTQBjKZptWL4fHfs9fWKuW8T
IArduWr2Gs+faP7m49UTYH3OxZtX8XnxreMBYunXBOjqveVBwedPWZm3m8yI
CfDib2XdOg/cnwIHd777MwEe+JhIjOLz9cWFLkhZnABk2YeOkZcIlPCLej6f
Mgm2TYYsnjAj0LpQj2jhjZMgibFh93ecD6i5Cyde2jwJfN8fXNyritenTUZm
ifIkaEo6lxSwmUBR+3urru2dBP9l/gsOX0sg3unDKzWmk2Ajpbw8ZYKFVs6t
c7wdPAns/7UcUcb5lNSRd54d9yeBZv6RH7w439JSOxqs+nASzD3htf2G8zNP
6q2knsRJQCp16/zsxELTZYNtewsnwbCret4QYKGhbfk6M+OTIO/jhmjLdiba
6HvVVnF6EhSZl7rvrmWi87Vyd63+TQLydy+N4WKcv16OKWvgnAIWNizzsVdM
VJjifDBTago4mr3wdXJkonAZxQN2RlPAbeqxzNvZcaQqmqjV9n4KvKnOf/V6
bgw52pw+L1g4BcS2f7zUNDSG3rwX8NEtmcL7rQvbcMsYEjfx/fyhdgqYNTMi
Kj6MIY5IM82ogSkwG3Lk0gWnMdRCEVXXXzcNbEPEOVR7R5H3YsjOIq9pIM4R
ebH83Qiqv2H90CtgGpz3iZ8Oix9B0kytP+r3psHExy9hWsEjqKybyM+Lxabp
vDt/fgTxoZOa2TnTwGt4bvE55wh6HiBzIGlwGshfOKFyznQYfeX6dOyeyQzY
7GXIoPUPIrLQ8CXTrX/ANZZlLa2FgTjrOA/zfvkL/BRD1wTbdqKF+kzHaJc5
wLhCOixXVYMGTmf9JyU1D/L8wh6YPw4AB+5du1qVuQCmYbZNZ0INEM/tOR3x
YQEoBOQztvJ8BzOdRtqmnxeAd8idBAu37+DN9p3reqsWQNXofS6XY7WAr3W2
ZJaxAHYG5avvXqoDLZsCRBTEF8H78XW/HXDec6U05vPdoEUQtv7ssPFMEzjE
5Hhz9P4iuMlrS4DNzUBqndsDoYeL4HeOhdK6882g4fIZ24SXiwCMfK27VdoM
1ITXC+YVLYIbV/1GlaN+AZLlG6v+qUXw4vvPuykKrSB2uYD74IUlYPZ1jvVw
XwfgUyi/Fmu7BM6fbLePutwB7hz/2TR0ZQnM9j+7feVxB3BNHEkI91gC11u7
duZPdIBj2uI7WqKWwIscpycxLzsBV5C32aWyJWC8f25b40IX8M0KRp9rlkCg
WYDvafluMNMSIyfwcwlwi7g0ZBnhc7pCBiu3ewmw/Tc38SO5G6DqrsDFv0sg
9Kg28VX/N/Dg358euWUZ6Fzey3srvAcQu/Wp9O3LIPVZrnjm+x5gZ3Hq5i61
ZfDSeYEa39EDTLOvgXbtZXBkWO1jJ60XqBq/aNp4fhn4OV99YXGhF4w+JC3m
RSwDz8/P9c8SvcDyC58lJXYZLGle9n9B6gNtA2IVZs+WQfEmtrhPQn2gQk31
wUrKMhgVYku33dkHktos5Y58XQYi3hF3A270gXOSpQZd08vgq+Qd9/bxPjB6
dXIqb34ZJIU++8iz2Ac80IankWwroLnq4b1pHjp4ZOUzoC24Au7bHA0cUKCD
xtTdfm+3roDOG/026y3owHLeWu626goY05ca6L5MBxNHo2vOq6+AzKD+33ru
dCBAsNZSdVfA8QHu0HWRdKC/OzXbzXIFDPQcn3copIP2oJaTRg4r4IZ6YOSx
MjpwaONY3OK0ArzXOtv+rKODIG9LvW6fFcBqIMJTe+hAtC6SlX97BURHcTT8
G6KDZKnihw9CV8DeAkUNOkEH376K9x18sgLC9tv8cl2mA2PakeD1L1aAQFu3
qRgnA/TauG+bfb0CMuyfxh7nZQCn/NdNDRkr4FLFW+t1QgywTG72THu/Ajyj
zeKvrWWA+2fXSN8pXAGfy/W3m0owgGS6SoX51xXgT/HZULmBAdIXLRz3VOHP
O5reqZBlAM1j94WFfqwAoUMPQo0VGKD6xeeC0V8rQKFH5qb9VgY4MzliUda1
AtqpSwnkbQwwqC3G+ZyxArju1bqpbmeAmw91091HVwCvamRIvwoDcAzeMDae
XAFH+CQ9pXcwQPSeV7Nb51bAo41hbAPYMiE/EzhWVoB5YOCc6k78fuaKDLGG
BMc97AzJ2NJr1/05x0WCs0GO3Lb480P7lauquElQqfvB8aOqDJBlr/NsNz8J
qvteO1+Iy3d7cP5aEpUE91+ev5uL67f/0/UDgiIk+ObFxr27FBmAkx4q4rOO
BC//MGaHmxmglidpaFicBIFSu2+LHAM83Pmp8KQUCYaXHrCck2aA8+cb7n+T
IUEfmWCvN5I4r7s7dHH7JhLcu3VfRt86BhjNXN4Zv5kEL2m+YqYJM0BuiyiZ
W4kEp4rfHGHnZwCvFaWOm9txfcJau8e4GODA5kOZ9B0kKAuN2m1JDNDg6Xqi
SIMEvf2v0GhTdPAkKUR+yz4SFAnJWNIbpYML3xP/xUISrCkTSRal0wFL8scL
p8MkeGJ/HKdnAx3wlSiObzxJgpri+XoxqXRAf2pcdesMCfZte/S0O4EOPl53
T+46R4LT/BtD6qPpwEqh9PwjKxIsTRyITvPGzyPM6ridSZC08Xau+xE6CHfw
f2t3nQR/+W46KKuFP6/95m6pGwk6Te8VDVTG5f2d3OfrS4LBReLvLgjj5+Yh
WROhJHg0UPVMeUsfUN+THWoYQYJamxMe767sA/xCv+zSokiwlbqeavuxDxSU
SW+weUKCKq6muuTH+LlSQWTraxJc7nqY4ncCP58fdC4uIUFLyXHFE996QUQz
n6FEGQmm9sJp4+xeYJ21Y4tHJQlaWfq5y8b3AgErvz7VehLM1+TO176Jn1eL
mrzuJEHKhbB34Zvw8yeHdob/JUH2982/ZJZ/A9vdSX/OKrFBeU9ivnx3FwiN
EBX03c4Gj2wYN07i6QJZQ/c2J+5gg/t1bBNO9XSCv0+dzg2qs8HE6ovEkXud
4N6y1ldXHTbISP+YfK2tA6RVtoaHWbDBroZmppZrO2Cd5Zf78oANJq8bOJUS
2QLc/TxMpP+wweigyQ3VwQ3g7mhMU339GtidiY5aCL4BBlsFU/ni2GGUgVR9
xVAZup+pVmJgyQHnnDM1p060opoTrxZvaHDC8nSz3uULdJR7l97xTIsTXlBR
spPxoKO4jzKfvgFOOFLqd37vAzq6LJF4k6rLCTOiuOHJEjriZsSz0k044aGE
enMpaQbSc33US7/CCdc6nFOY7Gag8gchZUbPOeHnUFmLIeMBlPGtKsn9JScU
0BvcVuUwgB7OkAOeJ3PCvmx71YRbA8jmTNC+8TROCP1bzslmDiAO6dv5wR85
YWv6puF48iDSzvZJLW7ghBrcVZpbCgdRSZ1TuBI7FzTkuRvwSWQY7RKBvI+5
uGD0HNJ/oziMUs2ooWw8XDD9wDEpf+1hFDmUE9xC5YKDbx+unXcaRhZsU4H+
UlzQ7V7ifbaaYbS464ZnswYX1PVO/K3sNYI04j3sfJy5oDtDLMu+ehRl0PUG
Bq/j9w9PvAzuHkXSW/6zMXbngn9o/hvuT44iSv4nS3k/LojEFl8c/m8Mtf2Y
P98QxgVrsgmmq/0YcmP3PSGXwgVN1x/0t1oeQ7mXA2BtNxfM170B7oow0S6r
i1XyfVzwodJZTQ85Jso/C4wC+rmgCZlXS28XE33SW7qgNsYFW9z0ef1OMFGJ
vOetxDku2OutUrvnARPV0Z2Lb9DIUP2nwou4NSx0rOO47o+1ZNiYvHZRjcpC
DT+V67eIk2FQfsbG9PUs1Fwy3v1bmgxb6m95/qfOQh3PHZb0lMlQ+NUEN+cV
Fho2u6i1/ggZbn5yTKK+ioUum4AydwMyVJQqfYSaWGj8iJRB43EybHBye3X7
NwsR6l3ngk+R4dl7fNsDp1no79oz3pPWZFjst97OSALnAwJ72A3sybD8zwFU
J0egf5xrw95cJsPAW7f3SCgTaHGmKe6cCxnGmxeZbYIEYm86XljuR4a+1vE3
WZY4X6lR1pYOJENNueff+/F5nusbf43XXTJ0Ee3ieOtCIJ5339u3h5Nhh37Z
ujh/AoWnplmGRpKhGavHqSKYQPyJISP90WT40WR7KoogEDXy8L+nT8kws+NL
2bp4AkUHyQfMxJOhTbLsDrckAon4cXIfTyTDNcFS0YmpOF+4WirGkUKGIteP
GZz5QCCpo0D92gcydL3WOWWI8xvW1ytLER/JcCBJ+El+Hc4X1Z98yy4kw/eV
knETP3E+Ij9pMFlChrGh3opt7QRSSVgvLFxGhsZPUzzvdhOITUS/dUclGZrL
Xkxix/lXEtsryxt1ZAitcqiuQzgf9vghH9tAht9oQdJWOH87SCyM5TWRYZTW
1RcbcX4nYrf5XUsLGVK6NdzeEwTq7zJ1m20nQ/le7UgRnB/mnQjYK9ZNhhW1
ti06MwQKqskkafSS4VN1Ho3Dfwl06kBH+VkGGZrOy70RmyOQQgFXmNcgHt//
9gqs3pfNKe80ejZChhv8bKwVFwhU9fqCaNE4Ge44feypI85nn0qGd3QRZFin
ve+1L853L8cUvFiaIkMjRUE/C5wPa/IM2Ej9JcOAXi1JQZwv8wYIbQX/yDDP
odMzErtrdh9xYZEM27kTonuwM65d/uC/QoYavI3Wq/m4z8Ajz5drKHDPFuE/
qzY8X7r/GycF1l98+X3VUk0EO4NCgRezjtxeNeuIZDU7HwWa8/JKrrq4RC9C
TpACTa8NxK7eD0TuuXlCR5gCv9e0TazeJ1zMeilmJ0qBr4UGlFatsqm+O0iM
AmNVePRX7x9I8fNJKRIUmCusp7d6P/FTWMGhSooCB188V1i9v0gKObFtRIYC
t3/hH16933Al+U9xb6LABIPYkNX7j4PuGR+3bqbAIaXdfH+xRVhtPkcVKVBU
k+k0g53XqUq+r0qBepqvOyawg0wsajN3USDRnNzHWr0fqg6Nqt9DgX5jn6vH
sefyGRLU/RSo+nH7vtX7nKpt1D6VAxTYNhdWtXrf8zRZ643xIQq0/LG8i4Gt
GR2rEqNPgUFKCu9W74t4uL/9eW9IgRobu0o6sDtvsQqbjShwOfTNu9bV/r56
WGftaQqUcPBS+4lt0H+dZ48ZBQLF2zV12OvPJf44bU6Bc8svQM1q/+r9O/vU
mgJP6ojUfcOOQJs2FNrh/mBcHijGvqBm0t9xiQI/DTX9Xr0fI8mlX5N0psBm
nc4buav9s3L+9gsfChwRe7ctETsxVHyE3Z8CzZbqGXHYi6JtxxxuU2C25b2b
sdj5SifEVUMp0Ne8RjEUe7PZkXffHlNguJArwwX7zgDXOoVnFNgjdcLtCnaf
c5lP2HNcf5mqfhvsuGCgZ/qaAuf9L5mexubL290zkEuBho/t/TRX77vg9CH9
fAo84F/B3IFd/j0nLesTBdbIZ6srYvvRFd3cSyhw9OU6SwnsCcGN/Nz1FJg2
vW7xH57vzZcF9iqNUKBSnfrZHGyVv98TH4xToL3qBf832PcDQrj+EBR4THQi
MB5b9wlH45e/FGgsdlj8HnZB+bzDcQ5u6BXtG2WOHS899Mh1Azc8ccP8BRv2
XHryYstGbqhrUe39B6+3k3usrPbKc8Nj2x13jmALHOvexrGNG1Zy6u5qwPb3
biqL1eSG1wwavOOxbVrQVMFJbtifwyaljE3tq4llnOGGU0/rk6SxP4/9Uhc4
zw0ltxwm07CF2cb9rK244ViSvNMsXu9IUYxXwIkbatSTC4uxxQOcZa3vccMw
i817DmP/VJQx5f/MDausXyYAHC981JRm9xRzw+9Su3mVsTcf2BNn9ZUblsgF
nZbE9jtl2PuxEtdXUC18bp5ASgGejlbN3PDj7zibbOx7LT/vfGRyQ88lqcq1
2PsDAvMspXmgqWLc1Hccr2a14i19ZHngk8fK9/Oxc+by+B/L80C5FEGul9iy
ziO2tUo8MC/9avRNbMoFo7V7NHig6+Qt2nrsJi0pdz4THliUxP7adhaP/9wn
9Y+3eaCNLf3i6t8zZD409f8M4oGJ99fEfcPucGI+GA/hgZfczLNSsQ2HpEdk
HvBAY35thxvYO1qCn4bH88CFGsn1PNhL70/OW+bxQL999CvKOP5GO01+5hvi
ga/MTQLP4vjcCuIpV0Z54FbLW5rq2JLUwyermbg8eYWva7FTcuJZd2d44JJT
vXrTJIGKJg/LrLDxQj6j0Ooj2IPXnwdNSvLC7dqtStsm8Hr3OGrcYsILTzxa
iajB+8Mtvb8Ju07xQqmUQzeSsMvEXo5Gn+WFo69vSnphH//09/bxi7zQ5cSH
95uxbeZf5ldd5YVnLDuJwHG8nn3mJD7f44UCpbJbFMcIRPd/PfiimBemUg9e
0x0mkFtDgnPZV15oMdnaI4bNI/1ofriMF05c6uEZw/vXDhQksOM7/n7h09AI
7NtL9mplrbzQ+7Xd+sZBAsl5bQ0anuCFrXtGx/QHCGR3PXuTqiwf9I5pPbuE
98P5bynZJ+X54Fbp/a7l2BHCiRpeW/hgaMvJzfex8989MCzdzgcbrYUvSWCT
J1xuntTig2KcSxI7ewmU6rir3PMkH3Q6tV3l2G8Cjdl+svkWzAeb/9RIbenA
679GO3JrGB9U3nj/dBfen5WUaz9FR/DBcvL7/ghsx7+/Baxj+aBNufTUZBuB
xoM4PrG/4oOtS14PsluxU47z6xTzwQa6qB3XL/w+vvY9mV/5IItXKT6zGb/P
2cpKtJwPVlXvmTuB7ah+8+PAdz7Y2+Ei8ryJQMyqOMugdj6Y+UvHU6ER718j
A3mVM3zweR13DO+P1fXs1Lt9Drfvz1WbV6t/382d43mywAflW35IaGJf8+K9
6LCGH8YveG+xwecPFo8qDzeVH94ZhLvTvhOIUPSx0Ffkh3tL007/q8Tr/QFn
SK4yPxzs3krzxVaZiXgvvoMf3lsyOLdSQSDnopeUMXV+uDY20W2lHMc3g8rc
MF1+6GS5TZRZin1VmFxnyQ99Tcx13BGO78Yj1xZs+OFUEfXCaDGB6neVtGxx
wOWfIVWew85YuPom6Bo/NMi5bKXxBa+vkGod6M0Pfzx5z/hdSKDeZP877x/y
Q1Gt0VPf8/B8vHd6vO8xP4yVlDPcgF18RdmU+owfckdKrjjj81f8ji7Zqy/5
oVL2lsv87wl0pmRPqXwWP1z6r+S/LTkE+tHJYour5Icfbt6i977F8QKVX6qq
4YdjE7KdPNgZSfE//9bh/kpmFKvi813oJf2XJ5r54fKsP8XtDY7Hs68hfx8/
HLki8KsFnwfzOnxS9/bzQ5Hy+rODL/F8LT5BvTzED72szQ9MJRJozV223gom
P3xUxM1cfo7rK2x+y3+eH6qsexY6EkegbX93DmUt8UOtpneL7U9x/dt5jneT
BKCh7tS2iicE8koskNIkC8DwQx2uUY8IpKYsUjxNE4Bfwr+NTkQRKOvI90W7
bQLwqcTNliJ8nlX8nXP1rooAjOawPmUThOe366Pfr3YKQAmnezJcd/F55Jll
Sa+GAJRcTJNSDyRQLHP2tpmuAMww27fTxAfH88DuGY8jArAy8tiDKi+8ntaW
2j42EIBTU0aq6p443oKIw80mApDzqULWGjccv6PkeI9dEIDFXzpdoRM+v2/i
8XG0EoDfG/c3+1zF67+QGA+1FYA9d3QPvbuC5w+jsL7yigB8+c8khc2BQNa7
jaMPeAhA3m3+OXsvEki/3fe/3VECcHEDITV+jECVV61DTzwUgMPxJeseGhDo
0JojCy6PBWCA3YSCqj4eP0WR7qwEAdi9nFh4RIdAqr5piZvTBKDS/YZKlibu
H6EHQoczcXs2r3+uoU6grW9uBtrmCEArY41O9914vH5Am6R8AViTsS+rbjuB
xGRaFSRLBWDWs5vFbbK4f/KKnmhWCED5zceaCqRx/+gncZ+tFoAl5Z+eh67H
6/n61bHYHwJQ4atU+Jp1BFopY88W7BKAvaK5Nvu5cfx1UFFj/yMAv2bNFpSM
4nxIKOWw7Rwub+ltteEgC80Vrj9buSAAk/zXw8o+FuLm5/UJWyMIX9cc3nSr
jYWU3g18pVEF4f1WSu6acha6/i/OUE5REMq/Tp12iWMhnyShC0HKglDZneVR
/5CF7hy95zysKgjP7UhVF49koUcJN2My1AXhyOV3IQG3WajwgFH7Ll1B6F+p
veslzudIoZy2OpaC0KLz5sEeDVz+Th+3FBtBKOJ/QSpsJwsJd00FczsIwvCY
Z127trGQrHJvWt01QXjDnhoeLM1Cuo2FEyd9BOEwf7/yCTILHfdWXVNwSxD2
gOa969hY6IxcKk38tiBsf/Xo+sA8E112i1X7HSIIE5TmDFNYTHRf3NnH7rEg
bDtb93WqhYkelQ7er4oThGofoiY1fjLRc0fzF1uf4/o2/ah9+p2Jcor1v7GS
BaHYkbu09BKc/9p/bTJKFYRrlIt1L35mom9U9YHcdEH47+PT3N35TNRstYni
nisI1wnkZOplMFE3b/x/7XmC0NkHsEJSmGjwg7Di3k+CcGerb+VUEhPNcpGO
rSBB2HWe/4x2HBORctwuWJYKwg+Gr/yVHjER5SzTubRCEBbO5snoRDOReHpH
THAdHi82r02UMCZybXpOz24QhC2KE2/Hg5moesFKta1JENbH6bYs32EiaTkF
f1KrII7nj7+BQCbyMBir39whCIndf9xzbjFRw43s9cbdgrAp+j5h7MtEmxOu
O3r24vc7dwtt8mYi//I9n18yBCGFfTRvqycTtTIXuGsGBWGn/r1Ea3cmUl5b
cmZqBLfv/rvbDTeZKGj/nRRxpiCMNh1ccrnBRL/t9P5qT+DxpL18qnedidQi
+XSuTOPxdG+vNXVlooiPDTExfwXhgOHTudXfcw70PKR//icIa3+8clj9vacW
5axq/6IgzFjcfmL196D6TwQgF4kKC/qsOlZ/L+qW4Wwfx0aFo6RH27qwk0oa
I5TZqdCy2SM8AH+/vnlX/jcOKvTICzeMweXNDz/qPsVFhZctys5Qcf3kl+Y4
xshUmLTu0pZZXH8ToXNKt7ipcFb0Y4OOBxP5bfpygsZLhU++K/z758VEbzU2
eKfwUSGl2WKU6ofH2zAgaa8AFZbbZdwPDsDjZ8Wo/iFIhSn0tdfN7jKRkpvO
pLUQFS7TulruhjDRmdAUsTlhKmw4ZpbCGcFEd55zw3ARKhQ+bhz2C49vTu4V
e+m1VHiL7crwxGM8/p3b8/X+o0LO5qngv3i+7CKiurvEqXCE2XK/JZWJLrLP
cLhIUqHe3qGXzCwmKlAsOPF0AxWqRMQvpeH5ae8DJ0c2UeH1UyXq5Xi+Rz9I
EvNToMIsuRLbr91MVJzMAYW3UKH9VH1bZT8Tra2ritBUosKp1w7t3VNMVLHe
WClsBxXufcsemiDAQlOq709s2EWFjkpfU8xEWUhKV9T7/W4qHLv4OmRegoVu
Xmuv7lSnwiu8KcGNm1koMXDvpJMmFcYrrKiyb2eh2kcJYhxaVJjce6qEvJuF
5JClvRKgQoe+uxb+kIWMmkojSiAV1n56Ms/SwfFmaFO+qTbuvzfvouWPslCz
4CiHrw4V/nx3LHzYFMcTOQMlocNU+HWg1cXpLI5f6lknXutRoUlb4+kCcxa6
fdE1qe4oFXqqXXkdZstCM8uScbcNqTCx5CGP+SUWskuojNI4ToV7dm/z7nNk
oba9riGEERWGzQ56ijmzkH6HZMBrE9wewwff2K6zUJFHpcc5Uyo0LLysk3CT
hZTXuToLnaJCQZk7G8fccXvzJB0qT1MhX8GG12OeOJ6ZVl7wPUuFdKG94IU3
jpdTLqd3nsPz96XGXS5fFvr7QPL4yHkqDNdFWzb6sZDD9krdFxZUmB5X8m8K
u73OZf/Ji/jzAvVtnrdwfRwl1XitqLDkYMKXj9hFPJXbvlpToURGY1YmtvJb
l03utlTopc5Xch478bDk+m32VBhZqiRYgd8nPFghwnCgQiPOoa+juPw7d1z4
nl6mQrJEEHutD67PRkmO445UuEVics0VXF/7rxULHNeocOnz4EQVbk/bBZfp
QicqNC67ujyI26u/LDHm7EKF/NVu5ypwfxTFV9Dlr1Oh78v03Q64v5T3unR0
3aBC22mHj3W4PxPbJRqj3ahQ9NBvrrmruD4eFdV6Hri/hI11hi/j8j9IfPrg
TYWBitJzUja4P05U5Fz2pcKM755R9hdZqGPSOVX6FhWWFdOsvc6z0Bflisfh
gVToLMuftQbPB+U650jtO3j92k2KeB3H5V2RCJ67S4U1yn8jkD5ub6qzm00I
Fbqf4j1cgOebwUaJk1oPqPDHfMWS+1YWKi4pN5iKosKPtDwHdzkWUrngfCg1
Bve3wuuDR6VYiBZfvlPkMRV+MmfNugrh+og6C48nUGF/0drapj9MZPBBnCfp
BRXKSR87fQ/vN8Um5WxnXlKhpv2bdWuHmOhlpPhkaTKeP818u3EwRQ7c5T+e
pVPhHP1Ig+lHvB8s/nf/6CcqtFtSLxxyYqKJ6aMh/wpx/69VMo+0Y6LhUd+7
KUVUqGHwIHydORN1tPX5spdQ4YVplYSaI7i8D2+vfa6gwubYPqtvMji+OGoY
KTZT4X/miZJbaseRr/UVg/ZfVHg8tbx3pmQcuZkl6AW34vmeIRGSnDeO7PXY
DjA6qNDPJVAh5/k40perVn3WR4U6ZXllPk7jiNp1hsZL4PjzkBrDzTeOuJtC
BT9NUKHYxmZLuZUxtKamiNd+Co8vCt2yaWoMTX+U5ij9gy3QwN/eOoZaYoZn
vBapEI1LE3xJYyj+qEfLKLcQvNtIifqkOoY2f378tEZOCO7xZx/9sH8UVbk4
fzgnLwSD/95nq9s+ihw2H/kxriAEE6xfvWyQHkVvY+c5BBWF4CT/68y4NaNo
q7O58wlVIVizOdhwb/kIUtwke7hrnxAM3bhD5JPuCFKOzJphnhKCfjMcF/5o
DqPd1uXHhUKE4PaTZdsKRgeQZPKgZlmoEJyd3KF54dcAWjNAlncPF4IfAmWN
JtEAqrfTX+yKFIJHl0/VtDwcQHaXf6SmPhKCHsG/TVP3DaAnLu1sMFkIdh65
le0c1o/mbzHfX0NC8FHCq0jWOgYqiRcVq/0jBLf2SfbSWT1oc4lo6LFzwjAL
hvb/bWhEhpzj6xuLhSFFX9045/c7NNHZX1q9lQafjx4aDjhbBab8ZL+eV6LB
wfXtyVmtVWBGxqqY2EaD+ilVz7tOVoM5+54CUVX8PC3AWsOkBpBm2jMt99Bg
m5gzrU+/FlD5fjz+d5AGeY1fBTxd3wBUtD5d2WJOg40OLkOPKM1gR8+sQ5EF
DY6ll5vSdZvBrkA1u+MXaZCT02Bp/d1moF71/uJNaxosSoheY832C0DTrJNf
L9HgfTOlcv5/v4CR4ytw1o0GBQ7pxsr0twKn+Pu0kEga5AN+DcEvO0Etmxyh
H0WDSuTYtLf0TrDVvrCGL4YGeaLekoNlu0C/6lDAg0c0eCaqWeRSchc4Uwkn
HifQ4HTpt/ibSd1Ae2q69k06DQqee9sQF94DXpwOTXXIpEHfpLTG3soesFgk
fWdrNg2mrS3qMGHrBR/xNMjKpcENuff9j+7tBUrrU97mfaLh88jVjs/pvWCt
nllQWSUNGiZ0y3/w7gPXMycsg6ppMII7MqAppg80CAfv0/tOg1lT9lSv9D4Q
1v1+5ns9DZqbh8nqt/eBYW39hvsNNPik4eqay0Qf0E3tTT/eSIOvDx2rW+Kg
A9J1fuumXzR4oODdQ0dlOjBve7U/thWPp0UzZZ82HRTu0xQ/3U6DHj+2Wzie
pIObFPufHV00mJs7+P2nJx00Xl3KiP9Ng5unv7QvhtKBSlPMPYteXF++yS/O
z+hgNKEE0Bk0aHNq8x/JQjo4zH5aInmABimyJyz0q+gg2YH513aIBotvhral
/aKDNfW3GxVGcPslj6to0Ongwk7xrJFRGuSOyTWbYNJB0ZOckPRxGhQJrPP9
PkcH4su6tldZNLj/6MV/5WsYwN26G26foEHnM/5OnbwM0Fx1XXJykgbTv6jW
kUUYQFWZZy53mgZPqdSYHJZggIiYxKYbf2jwy6u5Z49kGGB8Ti1bbZYG328w
SJmSZ4AjFnWhc3M0WFsl0n1GkQHelFrbFc7ToGqKt2ilMgNwbJk/4LNIg11B
OQl7VRnAMuLB+v3LNEgzENLK28EAxdPy/1ZWaLBEcSf+xwD/A1uEc4c=
"]],
LineBox[CompressedData["
1:eJwV2nk4VF0YAPCxDiUzjCRRRKR8SikqeU/K0iahRUn2KEkikr2yFmVvIUkS
USkVyhUislUKWWLGzsy178t39E/P77nce5Z73vO+55K1umRky02hUDbyUCiL
/yf4WPGr2lzX8ty0Ff9jEYmnBnaekDGFnbfCuyjYjYdDXWRkHGDnRZVl57ew
iC3qNU+XNLjA65ALRU6qLMJdz1SYT+YauOz+tJW2mUV8OsHyWDjnCxwISTqo
wiK43r0fmq0PAI3TQ6byyixC/tOMwvTMLRj461V0X4lF6JYgs4k1IWBi8uXw
SwUWYV95697o3ttgeW/c10yORYTVVZQOnYuAvBve7PQ1LOIEh+ozoXMPgtCp
nfGr8M+7pEuM10fCjZXJK9etYBHXxg+9HXWIhuiZ1kNGoiwi1JM8PDITA8N6
Dk9llrGIzAC1G4Nr7kOmWbZGCheLKOCvlybfPADxh10mp2eYRG3otY/svY8g
waHh8IdRJjEcWcDuO/cYcsdX8lt1MYmAsM0lo15J8JSxazS7lUmEVvmLjOo8
AYqz6qrMP0zi0VH5l8P1yWB8J6fkyVcmkRLlNjWU9BRSvvZlJX5iEpm/S3WH
HFIgTPj74/1vmUSBqUM7OfMM9Awfx2U9ZhLtllni7DUvYH9oaViDK5Poe7pg
PdDzAq5HpW53cMDt6TR80/8mHWJExeWyzzAJ3vMjB/v2voSug496LuswCQUX
Df/uc6/gWW5Jb6UIk9i+p31ssD4bjliRyvyP24mdzJBHzppv4bfeptLXEe2E
1o0teweT3sLri+3cin7thN7XG3dJh3fQdcon29OinTi5X2EjZyYHTnb+19e0
up24fvSCRf+aXKj7fu7kmag2Yv7G9pX/bueCbPKk9WvfNsLvPdfPn1O5MFJw
M7j+Qhtxc1X83rxfedC4WYw3dW8bEd5ZohAS9Ak+2CfdyGf+I5KurWYrkATs
KjB80RfWSrBqezRVzxbDzrU2yw69aSIEpx6WO6pUQPmUbfpmn9/E5SLf2wMu
v0DJN1E6of0LoZIS9eNdViMI599do4/73WlgL/VPow0c2p2Pzcz9gDjJQOkn
FiyY4uY8vVzbCjtcPr7iqeyCOwdtGtS7O6F2YZf55cYu0DyS3okWOsHuDiH0
r6sLOiZKX+xa0QWRaaUOeVzdkHor/BOfXhf0tdbJXVbvBnlF4S/dz7rg0cGh
uNbkbpBdqvSIsOiGefkNfrnXeoB3qQgrtLwHorMzVRSDeuDE2xPnPP71wAak
2hId3QPr90xxG431wPHTGjudX/VA5uS7l99keuHVPd1Rhc4eiPBIYX2+2gsW
81b20Ya9sOOV8EDs6j4orn9oeEmxD/g8z/aZm/VDtNWx0bGtfaBVcj1Bwqkf
7NjC8V6oD8hdcqZ5vv2whCfgX4hpH/wuWuDNSe4HQxV7p5SwPrCrp9T5dfdD
6021241kHygUtMpoOQ7Aaxpnk8VsH2x4wZ9h5jUAAQ+e/+oS6AenRFfPs7cH
YN1ryVWjsv1w+9lYH/3lADg2UdKFTfrh8MQWIam+AZhWrSrb+7EfzEv8xB5Y
sKHyU+CFipJ+6ORt8211YkOiHqId/dEPWVYbxHi82bDnzNvj5n39MFgV/bw/
ng3Bwfc7PaQGQKiHTdlawwbxf7Y8WX4DUBhy2MR8Gwd6HNY8V7szAJ8POSjf
2sOBvNGGA/n3B6A8MKg96DAHziw5FPktewBOlF2tWWPLgZRtW2RZHdiB4zsi
IzmgenteS2I/G9ZG04d1ujiwxWHWJvM4G0L8vOqbBjmgpjsdqm3DBibxTU97
hgPbKeN/HH3ZoDGgHuBLI0HTle30JYcNF3aI3M/eRoLW0f7o48VsCJosXFqi
RQKo9Ob117JB5mX83ad6JGj3dPCLD7DhVG39s+8nSdA3a048v5YDXqtaaB89
SDiw42/JwiYOXE0/tHqLHwkHxRv6ondji3NTPYJIMKj9tZ04yYEMVXtruxgS
DDN/mJnYcSB6Nv+k8CMSjobWBPRe4YDtlTcb/ZNJMNn3vZoRwYEvISY+pVkk
HJctH017xAF9oY6w+HcknJgvldRK58CCNTtSLY+EUx+L7Oy/ciBzw4388hIS
zGIKb8/95ACjyc2jqJyEMy4F2ZFtHHgc+cX2ZjUJFsp585/wuPCEyUlZ15Ng
JfhR3kiQhCWfDCJ8m0iw7so50C1OgsLRZUE2/0iwKX7r7CVPwpdbe1tEWCTY
Jb2JFdmC28lTdzGoiwR771efUoEEkZlU8a+9JDicymTuOkwCP+v1h4oBEs6r
Zwj8OEXCn9+TW+JJEhzFXqjY2ZNw+G6i43/DJDgNpZrMuJEQs6TtQOgoCZeq
Uzzv3iAhJH31+6xxEpwzkpPW3cPztqwj/sEkCS7BSaV5iSSMWHf9OzxNwhXb
xIEjL0l4Yy3k+W2GBFftR6KdubgdX51PLpkj4eqaBxqeZXgcTWydGPMkuM/G
mdN+43aFuL1hYXs0xtxMYeJ+vbVfeX2BBM/3Uek7BknoSdub1Ih9PepebTW+
TzPvAe0FbK2PejNv+AZBiqU6smgiVTfcS2gQPtx3KVo0itGR1WMMgvE7/YuL
Lryx752I5CC4K70bmcfe47JXr1lmEPQH3h1bdJGF9t9UxUGw6j8QNYetfWTP
xcsqg5AhcvXlLHbxbkTR3DYI4zrbn8xg71OGKH7NQWCeD7s8jf1VUkvhh/Yg
CJ11k57C1hXcnftw/yDUzY6kTGCXTuw6ZGc4CMclqQLj2HpdO/9tPjEIJ0Ky
dEex7X7VDQSdGQRfZBQwjH2z0Gm61XoQUmrVEwexvzxIXn7HeRDCPpZdHcBu
C9KU67g6CH7PLm/tw553/bN5l/cg/I0xq+3G3nVkyaHekEHoCRhNZ2Kf0kwx
RXcHgTaR1PMP20NJ61xc7CAYnbnD34Kdw+MSoPN0EJ4UybP+YG/62PjxyadB
OGW8b005tsGzK6WTRbi9f7rMv2I7Ri6rO1I+CEvMS32+YL9w3EPO/R6E5Rk7
z+Ziy8m+WHeKHARZq77k54vjKbx365uxQag2OteRjG0x04wEZgdhn6Q0fyJ2
wm+62XuBITj0fHNfFPaKUI9I0bVDIPC0Q80He7u7aJLD+iHQMVvu4YFtYvMy
s1BlCNRVrz10wb6n1fbNadcQiJb9CbDDXjqit1BhMgR7ltb+OoS9oa1daO3p
IWjS8pPQxdavui55zXIImF2ndwP2reevtik6DcFK8XuKqtgLp1c43ggaAh6j
H94M7NX731z7e2cI4svzi5dia24/GKQaPQSlWWW9PNjX6L7J/5KGIIK9+88I
fp9HSroaduUNwbpSj80/sbv/e68zOjAE8nj8g7HXel+03TgyBM8tpS19sc0q
5W9ZTQ2B5r/mPDfs2vNRJbV8w3Bim5SoFXbec+e9mauHQTfz1JEd2LdlN+6x
MxwGu2t3uZl4XZQ6My0Sjg/DP196+B9sSuF9vzqzYSiWTJuuwHYzFyjUdhgG
bg+6+1ts84edWmsChkH/q+VsALbq8iTNhrfD8GggdpsUtqPNCTNa3jCYni2r
FcZOfSvspVs4DJVjVYe4sCWNvPPfVQ7D1ev7uztnSeCNOLXzXucwtKfZPcvE
/iOwXOPAihF4YK22Rx37+mzI1k+eI1Ce4Va2BceHalfraE//Efh91nx8DbYM
W3NMI3gEhDcFLQhhl7SQ73NiRqDE3zapC8cXIeLYzlevR0DNrkkyHjvRX3ZP
ctcIfFdq6RyZwuuDP9cg2GgUIjpyT4fj+CTmG/lK13QUgpWuvb2KbTdxgc5n
MQoy81tZ5thLelb/9L84Cq4KGhUq2EblN49dDx6Fg6JP3lZOkNARZmjmVDAK
55Y7NVGwqSI9DiYbxkBMlHy4f4yE8SAzncebxyCs8VCaCnbXfK1M3/YxmCxe
G87ALh3IrffdOwZnapI7m3E8DfwWppNhNgb8CUXERWx+v02y3BFj0FZfMhs0
gk1ebXg1MgZ9RurHEobw/W37305PjcHPQPdd3thdzWcjdCjjYCaqMGaGXVqh
r9skNA6fyn62r8IOTJV8x68wDiMphvfjcNzkNy+IOHNyHNbUeewLxPGer4pP
b+nncfhDSjhosfF4Xnxk3VI8DrdWHRkTwxZbttXvVcU4DMWp7OnH+4X8YYtc
44ZxmK2qXR6Hva8qb+OjkXHIojk/7e8nIaDqEv2/DRNA269XHdSH37fqxkaD
uAlwsqMWBnWTIODkPC6TOAHU4IYlx7DpwlQGjoRgqPrfgiy2jIHaobjsCSj3
/NCWh/cvqA4v+Fc1AZ9rCMeeThJ8qvc+deadhD5Zq6+qHSTMVGc6Rl6eBOHf
gsfc2vB6/GH5cJ/HJGw96vR3O7b2r+UV4z6TUCzI7prA+2Vovbfi6duTsHBT
JMIDW6LtMFPu+SQ4auiTV1pxPBlin8hpnoSKNY7OR5txfBx5EniONQlNH/sS
l2B7jx3LWdk3CfGnDDWK8X5cMvVZ1GdiEvIfRDzdgm3MHV6lKzoFqmfb1iz5
i/dHhsreBr0p0DS0enkf7+fRy5mXQw2mwFXx6XV97A8rYpM0j03BsrbKiPE/
OF6vmp9LspoC/rKX1w2x78hXf3TwngKrcqDP1JGQvs1JZSZ7CugGOZfW/ySh
80TWytWrp+H8Zs9bFd/xejw5V2QmPw1xNUn1Vtj2poccH26YBpvRA1LTFST0
neorkFCfhg9Xhi6swx48o2DDMJyG4cNyz52+kTBrnZglEDANqju+GZfhfKXA
hn1CL3gagpoX4g9h+9pqcgWGT4NjwD+/2mISuM/9NeZ5OA2dU0yZuiI8v+fF
p+beTkPsvpVj5YUkMJzD9450TkO4eYb4+U8k1Dm3DKgOTMMtRY9rf/JJiL2s
HOs8PA22lwzoe7AlrlT0sOenoWONQC4d50+rr/KH96yYgTnh9Xz3P+B47eXT
0LJ/BtqaVpzUySZhwKvKX8pwBhKypd7ffUNCprfUxtPHZ6BSvf9l42sSNvvm
eTdYzUDsrS3bbV7h+Q0YX/vr+gxszC2wPIXzkj3BThe/Zc6APe+CL/EMx6/s
fyfC381Ay8fWDd9TSBhtMtQ2yZ+Bi87L534+xeO7aeuKtm8z0JG2u+jPE7xe
6icKJ1gzoNLhZfYyAc8HxSHjc98MdA7c+RmL88eCDX9jbgzNgPQk7YPXQxIu
+3w6T1uYgZDxr9Y77+N4uM5fTFFyFm7ybTbyjCbh1ZHh+QGZWaAaa+jujiIh
+Jp1b7biLHCdYHybxnnWriqdAq1tsyB958qETQQJSa5L7I8bzsI5/Qz74RAS
LhRH5d8KnIVP7alTP7zx+mTzph68MwuqBjtO/+eFx3PF1bsi0bOguKJvyM9z
cT85aZvwZBbmCuUE6O54fESlaTmfZiH2uteTb5dIoGmGT3kWz8K2GRevtos4
77JdYKGKWRj4+ZuXvEDCw9z2j5X1s8BpUtMlz+H1bplq1TE8C2X1reevniWh
MXTF4fSpWYip3BG/+wwJ2e+C1Z0pc2Cgfz9tCuedtgIXhGaXzcFXCT7PI8dJ
qHi16T1DCV9/e7P9/CGcd85/FNx7dg5auYN0Fbbj8Vb86hRjOwfdIsNyR7fi
fOjIj1/dF+bgkuTcS6fNOP9M6k247TEHBxWUW/024PxEW3LLn3tzsPuEQOyM
NM7HzivErY+fA4XZ9Bc5kni/jtoy65k4B8IXtmZZrMDvV8eB0jUZc2BxffBT
MB3Hy8DrpxxK5mCWjMtYxY3Xf1YQkV8xB99HNadPzHNg9E+UvPCPOTizw7rq
xjQHmIovOdktc3D9t6D7i2EOEOXNAbPjc4AqucqVmBzwWKaVEaE0Dz51Px6N
fOYAue0AnblpHpqCG9RlcjlgZ37cTW37PFTzqippvuOAySsnaNSeh8H0M7+0
cV2hevTxr7Vm85CilmMbGcOBvmjKbE74PHwwinp014EDp6WKDzWPzMNpiYDN
ZUvx9YtDwznT8/CZcUj1Mh9+PrHmfgTXApx4tMJefoENsVZendq0BUgY8Q3L
HGbDz7RtPi82LEBjfCfD5y8bLKet5W+oLoCnc3pbSh0bBg9GVphpLOC4WFvN
qmaDMMkRp+suwGbBm8w3uE47sC3t1VXLBdCL+kF8zWJDY+CfY4b2C0CckDfu
eMEG+wbeWaVLC5CN+O5ueMaGwOuW+i1eC6Dm5O687REblldFcN7fWICVQaWv
5+LYkLK6IPpu6AJUeWv8GI1iQ9EXyfa98QtwZaTB8uptNhxl7A+SfrwAQivZ
3LwhbGizcf9v4tkCOP5bwSq9xYZL75/9qn25ABOery4WBrBhnlp3Lf3tAmyp
uT01hOvOO6bcMjfzFuDlsqIyM1wvS2VsLj3zZQGsnSy4ua+zIWPW3FH92wJk
GB3JZ3qwYafBHVGRGtyfFer9C1fZUP44/2Pf7wX4V+7vfMqNDSeHes1LmhfA
vvKK8MgVNnRpS/AlshbA1M7cscKFDW7RuhnufQtwYIwt1n6ZDbxdrkePDi3A
KpMYN3XsSPWnExsmF0C1bEVrlTMbZEN+JPAuLMAt7y1+Kdgn2QuyJDcFqTjb
XcrHlhFfMXaan4Ker2YlieLf79ZS+fZNkIIaTSP7X2BnndN5uG0ZBUVy6wj4
4+dfvWvmlEynoMKjlMg43D6t3Ct7aGIUZDRxnp/tygY+ZqiY1woKkmCYlvrh
/lUuSe7ukaSg0G9u4ka4/9Fbc/OOraag/kEBGQtPNpiZ1d4pkqWgMPX6oRde
bJC71W2xaR0F7f8s6a+Cx7cvc37ro/UUlK8RmT7gz4bsP8upgsoUxOWQspV1
kw2eC8p/3TZR0PWHMd/pwWzYs35fJnMLvt9YpZBrGBtqr7kYf9pBQeV2JtG/
I9kQnxyioLSbgvJ+ar2tjWXD2e9JUzGIgkLm3TfNPGADR6rm8SU9ChLYLGxQ
/5QNQoUbB9Yeo6Bnpr5rrn1gA/P+0W++JylI/M/Z/Kef2HgfdE9pPk1Bgeud
89hf2GClWGwWa0VByw9PejRU4uvhp6oEnSloZ8SoyG8Wvn4mJGswlILujRWv
/SPGAQ31V6GHwymoVMT1tvQqDiwT+W2Xfo+CjPVTz9jLcuBjicwam3gKir+k
acytgq8rf4yof0ZBTr/G52X08PXpLueCQgpaU+b+b8GdA+F1QodXlVDQ19S/
T7q9OWCdtUXJo4yC9shXyn+5wQFhK5921WoKYmRcqteNwNfLlxs9a6KgY0tl
E+88w+15ukuF+x8FxdSK5YzgeCHsbbnkLBOP5zQzSe81ft7mzCKJXgryHS5q
+JCHr8fv23p7nIJexDFWvqvmQMfl87TeKdy+bZqNAb84kHvwbr/OHAWt5rss
p9XAAZuFpqcLPFzI2Zt90LOdA3l2V8SuiHChD6HZtCUjHLDdljxmqsyFfB1f
hT4RxflW+HKa9yYupFUfZcInTkJWd/D6pC1cyLriNPeplTifvX/pdJcGF0pT
8vz5Zw3e7+Y1v7jocKHVCVvm5ZRJeHni9d8YfS5kM0ONFduE96vXcqMfD3Kh
4OmsvAlVElZaL1FcOMqFrj6TC4lVx/lRWf3tMHMudPiU0nFNbVxPyBxMzbLk
QowDry6W7SNh+FoB8cOGC3mtkqjR1cP7qfKz4RUXuNDRYvoBObzfVN51OZni
zoX2PnagmB4jgWO6TP7zXS4UIjoX2GFLguhbv91tUVxon4/3+0q8320XGj3O
E8eFOh7xH3/pgPOjgr8h+xO40BdjWqwR3i/pcmnk7xdcKGPP4xJwJUHNa5Xg
1EsudHCVu3yPGwknf4evlXrNhVr2D+0JwfvvkyC3Y1bvcfsbuA3e4/15y4B2
PqeIC+n57Esn/Eg4rvO+TqSUC93J1ZxVDSDBM1GJo1bOhX7fFVdKvEFCsSFd
9noNF2p67BVtE4jr4ZyWQGozF6Jm5TIyw0hw9/EwkhnjQq1zlWk6MSSsH/AS
CprkQux9LgbXY0loMPUvZc9wIeXitq8ZcSRobAvdmc/NjS4VmCXM4Xxlsv/h
2uN0bmQ860aeSyQhzTSp+RODG1Uy1im5P8b9KUuJlVvBjX7uaxMMSCIhNzlz
yZA0N1LL0V0Tlozba0oMh23kRtLb+kUupuL9tqz45bAKN9I/f5Bi9pyEv2rf
7Ey3cKOXf1bq6KXh+aH/+KuwgxudZM6uYaTj/LSUWfRFlxut+sEjF5CJ6wE1
/qgJS25UAsG7Kt+SoJK85LC5LTdaWS1aE/yOhFYajfrVnhs9OuBfqJ2D64n+
FdcjL3Ejw2SF4az3OF9JVrL+z5sbBQufGHHIxfUL7fBW63jc392b410L8Ph7
H2WXP+RG/e+JDCGCBGbfseebH3OjMpO4H8nYe0vNV80/40av75d5LOa7vN7O
PPffcqO8UZ8NXDg/vtUX9au6mhs5vgtQki3D+Up9Z8XMD26074kBNXbRJepF
63/j/jTEPBXE+XdAYtPrgCZu1DZzR5mN7WMkF769hxu1EmuXpeJ8/Wpetn4i
Fw/q/sEtw6rC9ftzXvSdlweVFKco6FaT4Bp9XH2SyoOiDz9US8N2cZpeZyTM
g/blfnNzqCHh0lptHv5VPOhCQP9IWy2uD0J/fL6oxoOWbepsTv1Fwjl3uZwH
6jwotwvNz2Db2bi9LNvJgyy9kJkhrj9stFY+lN3Dg1DI+cZxbMthC4/fh3nQ
zU+68rtwvXLq1OCW3ed40Ou7n7Y8bSDh0AZamtADHiT2JSKL0kKC6bdLaUoJ
PKjIMDYHYdvZ1abpJvEgacXNe/2w/ZLvvfBL5UEaaiKTc9jvJMUyRrN5UERP
5eAIrs+klq7Mav7Og7aZ3z/0Hdd3A/1r372c40Hmm8yom3E9OBVy4105hRep
bbE9YY3Nv77jXRcPL0IP9YxjsWVsnuXILOFFv1qXG81gmzQrfogW50XWOt43
vuD68lOlcp7XJl7koht+DnA9eidze+EhS16UFP97HT+uZxUs1ltm2vCiCtmp
ia3YBaKS3ML2vGiWs8LfEnvQfW5vjRMv0som8/KxTbRLyo568aLpIq5/jrg+
lqo/WnM8jhftPht/qQjXzy8pF1stqnhRm9orBy1cj+u8Nff9UsuLJhyl1Gyw
W20NZdbW8aIRheWlIdj071utWH950YN7qtp12K4x0522Pfh+0a7P7HB9v2tD
MPs8Dx/SXmDb+uP6v8L46azrDj50s/ri8N0RnH/fYv59qMmHnjqo7MjCfvBB
NrcI+FBchvCJ79jnVyW50XX5UEhzhwTfKAmCrEecDCM+1HHoc+5VbH2X2Dbm
BT50f51btNEYzqfvhpQYJvKhBtuCLPY47k/Rt2T3J3zoSaLCOv4JXO+OUv0T
U/gQKafgvhrb5mTg7oF0PrTjr0mWATavzI33QR/4kH7uLsdMbO1XXmkFtXxo
2x/xXTaTJBRWXbqtzMOPBJlWHz5M4fgphpbG8fOjf2K216qw007RQ7mW8CN6
RhKDhR3R/TroD50fkQ7CP5ZNk2DONRzgt5ofsZM+XLbEnlVzvVa3gx+ZeLw8
yTWD6/Pr+ya1dvOjn093pophd3wRc3+B+NHzvdxVitjfDXJcffT4Uf41l9TD
2A/sxy+tP4Z/v2Z7aBz2jkcedl7O/Oi67oU18rO4/0z9zq4r/Gjebz3/NmwZ
pZU2R935EcXiZ6kOtsD7XEsFH37keIT+xw67oWbarDaMH5k2Kvz3HPsqj7ex
/HN+tIHyrERmDtfr+w//DE/nR8InKQabFs/n7kofncrE43Gy6M1ubB3pAoPq
d/xIOiJS4BS2mPrCfo8ifnSljXf0Lnb2eX9U2cKPxgyJ0glsNSuLbwrtePwK
rQt55kl4bwqG/h38aKezRCwNO1d/7uz2fn6069iX3wrYhQrXfJMm+ZHajEuq
MXYV07nAlUFFRWvE7qZiG/w9olsjTkWeJfsOvV48n/yhUq0kSUXn+nM6crHr
CgdaWmWoCPVbpVdi/020n9NXoaLqCbmQQeyeUxaa0vupqOk/Tszi+ep5Iyhx
P0RFFtIrVuzAHti/+tDPI1S0ozHBFWGTGs2ng45T0aR4RYkB9rj4yetD1lS0
pKAw12Hx/FpYnefQOSp64TUj7Yw9xScelnqeip4mJZhfxZ4d/fXg9GUqilgl
5RaAzfPrSN5XHyqyb181Eb94vl6hoi0TQEUB4i+1Fs+f+YuWVXjeoiKT8nSr
p9hL3nxv3HSbiqyixiET+3ZaumVoBBVpL9OZeoO9LCmktyOSiq5V8Ea8x6ZH
6E3dv09F+Tf/HiGwIwMV/EcfUVFuxpBnMbaYD5/gkSQq2nbeK6Bs8Xz7YrEE
73MqysrjKNQsni8fBA2nd1SU/M74azM258uFufAPVCT9Ijhp8bye0IgvepVH
RUKRv8wWz/MtFIYODRVSkY3ZS4/F8/7NCdKioiVUxF+0s6EXm0vsQP2WMiqK
lW+TWPxekMz11NK1ior8vjjvXvye4OJRoxBTS0XPrM1kF7837CVn+nN+UZHH
z7NdI4vttVv/5s8fKorecf32GHZHs8nViUYqOvEli7H4PSPH2H+XRAsV9YRP