-
Notifications
You must be signed in to change notification settings - Fork 4
/
Intrinsic_SOC_precise.nb
1657 lines (1637 loc) · 85.9 KB
/
Intrinsic_SOC_precise.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 87768, 1648]
NotebookOptionsPosition[ 86979, 1615]
NotebookOutlinePosition[ 87335, 1631]
CellTagsIndexPosition[ 87292, 1628]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"2",
SqrtBox["2"]}]}], ")"}], "\[Pi]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["2"]]}], ")"}], "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"t1_", ",", "t2_", ",", "t3_", ",", "k1_", ",", "k2_"}], "]"}], ":=",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
"0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", " ", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0"}],
"}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "1.0"}], ",",
RowBox[{"t2", "=", "0.2"}], ",",
RowBox[{"t3", "=", "0.01"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Re", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",",
RowBox[{"\[ImaginaryI]", "*", "t3"}], ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",",
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}]}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "0", ",", "1", ",", "2"}], "}"}], ",",
"None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "\[CapitalChi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "\[CapitalMu]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "\[CapitalSigma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"4", "+",
SqrtBox["2"]}], ",", "M"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<k\>\"", ",", "\"\<Energy(a.u.)\>\""}], "}"}]}]}], "]"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.665230830513342*^9, 3.665230908660524*^9}, {
3.665230955182065*^9, 3.665231038545458*^9}, {3.665231080152444*^9,
3.6652311288505697`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV2nk4FV0YAPAZ20W4F/eqRIhQSRKyxDm0orKXLUoiKiRFsqVUCtnXUnyS
JNkqaZmJQrKTLVkqhWTPepfvdP/x/J4798w577znnXNmyLl4W57gwjBMmBvD
/v2dUjUuX/0o2GC8/t+HSeRgj9O1NB2A8kOljEZksVj/fcsap0CNhjhfO/JI
U33WE3c/sGMmRPgr8sfOI/e+alwCVU5mxSPI7d7+jXz4ZWA2c2RqEfn9DGjI
dL8KIjZfbBBuYBJl/vz1Wo3Xwaoo193rkXOWm+saNW6BC3FdthA5MTTto1tG
DKj/EE5xRq7Et7pysDiw6SWvxWXkip1Jx03L4oE236LGQ+SSiEWXFPdEgNuM
lDQj59cccfkumQwknWzrWMjZApXHtjSmAMXx14GqjUwiPvrm0RqNDBBvviIn
Hflm07iz+PAdULazYE0HcriolbNzRibQ5C/ewGhiEi/rhJ8uY1ngy2Qvbyby
s99EYVZPFvgY4dr6C7lYyLdwb1k2EOqmqWs2M4lHBzueJLjngF3b1z3sQX7g
feOJjuED4FUeV6HewiSyYnWf9Evmgp9TukdikNNaMws2NT4Eq3V6TM1bmUTk
IffHVRqPQaS23RN2G5O46r/6sYdIAThtP776XDuTCEv9lE8dLgAv3UZX/EYO
6NmS75BRCLbquwcOfWYSGluC2hexYkAVPn6YpwvFB9i0158pBuvvu39IRFYz
V22/11MMZq+fLFDuZhIqZwfadpeVAO3jHn32PUxCoXRXW5x7GVDUD7s33Ivi
VyXd5tpeBnZJ1mQnfmUSsu1zrdsNnwFdEWnarj4mIfU3r/Wr5HPgRq+WfdLP
JOjbhVs3NL4Ajzpy+h5+YxI8rz43v9N4BawTU1v1R5iEZOiXDa/zX4H3kxPR
6qNMYsvOwfDnsq+B3myn7KbfTML+05jGY6E3wKBvkVD6g+L7hTst8cdbwD19
4MrBKXQ8O7Vom8k7UOj2bO7gEpPQHVjzVS3iHXB/2HE5dJlJ7KrMFFAl3wHT
2K5HpUzU3rUcF2WtSpBpbUMqcpjENZEiuvS6KnB075eE7TwsondtTQDf0ntA
MTSUxKgs4hdm8oBb8wPIXK8aeJLGIqa/1bdgPh/AaM/k1nZRFkF52LpxeegD
sAi6kPyMziLUt/T1TrRUg5Ee5aJ7kiwiEvyF3Y9qwVt32ykhJRahdVReoMCu
HhSM3r+pbMQiNucsBJKx9SDvU8ZM204WoTDcMNZeUw96wtgvL+9mEeI+Ac0s
zQYQHQEP/NjHIiZDG1LMxBrBoY5O2gczFpF/z19xpq4JpPe8l5w6wiJuTwzJ
SWe2APHHKtJtl1gE9xZd4Er9DEpoNksvXrOI2sTCs85NXwBrnEL5uZdNcEv6
rxmOHQQSrQmnzAbYxOuthxrjMwfBL52FS+e+sYkLxpqX9QsGwdHjD+4l/2AT
owEzP+NrBgF9zWvxnmE20dzpXaLPHgQr25usbKbYxJ2kk8YJp76BE89b3CS5
OISWqL2/wZ7v4IS7nsrHdRxiUlln44jVd7DfcnXMRwUO8Qiu+ppw7Dtw1aRl
1SpyCCmfDqORoO9A8ttEY+VGDsHdZCmSWIqOX65fzlXnEM1Rpg9GZH8AU5Xt
aipGHMKDX78tcfkHOMxUObPyKIdIfm541lVwCKyITEumunCIStc9VI3VQ+A5
eNzG64raf2dm2qY1BM7i14LG3DlE40WXKlHfITAcm6KR7c0h1H9fL40ZHgIX
siIeFYRwiKWG1oQbn38CTe7ovxsyOIRiUOdW2x8/Qd+tbKz/Doew2tjbpDTz
E1QMX6yOy+QQBdeGVtTQfoFqv6sBk1kcwgksXOHd/wt8eH1/a3weh6gqkvYL
r/wFyuScv7s+4xBRCSetg54Og52GoTe2N3CIa92O9Xxvh4Fg/crh1EYOESZj
sSuufhjsHVdtm2/iEOcf62jkjgyDPvubuwpbUftVgvRm+REg4vTkGKuTQ6jN
FLTJp46ADNIMk//GITbqZJkW5o6AerGaXY7fOYRCaFKV9rMRUORkuhj/g0Os
XhFSeqB1BMRvUypY+MkhuOTNEvyFRoHT5QrhB785RLvllOWnsFFQ4HfibNgs
ilfqUJ3N7VFQG9qJxf7lELV93UYDd0fBlrcfhu/McYg3npXqfytGwaxK+evC
BQ6RG54gJvN3FNT1bzUvYXKIgBLNVl+P3+CB9FdeKS6M9F3YYMLy/w3ktFt3
xSCfNlhbef3ab3B++zpFDvKxOr6SO//9BunnMhp6uTHS5FtnXPXX36A6pOP+
dV6MlBYLtJC0HAOL2WlD6fwYGT9ZmZ7vPAYKccuhSWT+phU/dM+g7x17nuwW
wMjpW3cvONwYAwK7/qT8Rq7lfZdx5+0YiLl3slp5BUYa/BAYUqkfA6/wH1zn
kUsrLVXfdI8BTrY/L4mcGfqD/Do7Blq/PnCwFMLIc4uUn2s3/QGOlzJ3nhTG
yOFO8y1Ptf+AhsuWefnITs/TAsCeP6C5/m3zb+R95zatOHrsD/ghl3/KUwQj
1/45qJaV8gfIJgZX2lIxMvFTysWtD/6AVE6GfhyyQP5A5buSP6Dgt0dgLfKs
m6/Nt4Y/4G3BBu1tNIz8OJAUKM8zDuJ8JN8uIhsQfVWlouNABo+GyqIYWXZX
SXiXzDhIXcEKt0HOtH95z1V3HOzTkNhbgEzX4RqZ3TsOtvIcr/2MHLnSVD3C
ZhysKZ7lZyP7tfe+f+AzDqo+76gxEcPI0ZL1Iloh4+DG+6xd3sjOcV6Hq2+N
A2pIXlg8sslBbPRn7jiQEqBofEYmVIy3+ZeNAzWxVY9nkTVWxAdRKsfBZ2v9
ATFxjJSplacqfx0HL1/uvmqKnJh72rZ8dBx0No1Nn0AWjHiWtW9hHAhQ1GRC
kUOPs0e7eCeARuksfwryrOFeDQ/xCbA1VK7oCbKnbGzwouwE+HA6k16F3M/u
qo5UnQAR7dZanch1rzzt8o0ngLuiZPEyMkwvzdY9PAE4vlyCQnSMfBbA/F3n
OgFi2R0ya5A3Ht6t6eA7AWJar08rI9/XjAn5HToBOg7yhWsiM+idNZeiJ8Dt
DbsbIfLNaRlRoYwJsNlbu9MEGWs5aX8nbwI4hX++Y4V8/mnxfyrPJwAuJS7j
gOykINs1+H4CGJeyPx9D3pMWI5TSNgFWL9yhuSOrirDg/m8TYNbjV6MnssSV
U+fxqQlgdaybdgaZM9/96DlnAmRQfTr+2U9LYUKTMgmSxSJfeiEP+zhExopM
gtNFFX5nkR0fx8v/ZkyC15fW819Abh76+Ga39CTY+ajiXBDyLlnc9r7CJAj3
P/HiKnK5vfb00qZJYLxlRVsMskqSd5TNtkngrnCrOv1fPJpyFYt0J0HC87dx
ech0wT5S0GgSeFte1ChHvrGL4XDCeBI8871R+BGZFbL/L2E+CTKySjm9yL4v
r9yWtJ0EMPC10jTyz5mKDeedUfv5TooCDIy0V52uanKbBLtnzZblkBtPbnDa
6DUJfNRg7g5ko/+OLlw9Pwko5t2KdsjPv6bE9wdNAh5nIsgfOdOSrybx1iT4
TB3KfYksFq1/bCJ+Eri6mQV+Rb5W47dsnD4JfNc4ynFLYKT3ju9bOHmTIL/0
7LAVMlQkUz2qUTzPfjFdsRLNp6Pz6u8bJsFUXNMTfWTlDNWGtZ8nwTqvxb6z
yDTaXbz9+yTgu2tS0I88uHjR0wCfAt95N/Y3r8LIQxrFPGn8U4B1Ru+h6GqU
j17DmTPUKSD14qG2NXLJ90NteWunwKM67bI+5PCGbTvEd0yBLWcy//Kvwcg5
yqmOMzunwNxl6uRhZE+jbJ9akymwoHCnIA/Z6gXtQbDdFKiSwE+aSWGkQtYf
4eELU6Bu7m5dsTRGfvB72P+6eArs9BHZ+VEWIy8s33BJL58C/s+/l6vIofGE
ew75E1Pg9qHF3DjkqNubf6s3TIGaocRfzusw0jK/dC5veAo0rov8IqyAkQP9
hHCSzDQQ7zlxs1AJ1V+3rFhfxWnQvXXnsrIyyqc/4eLmm6eBrWhQSw7yw6Xd
q1foTYP4jw159zdgpBejXuHyoWmQda7ja94mjGSadOmdiZ4GukvrVJe2YGRh
y8u3JonToClHyvKmGkYetc0wVM6YBlL/aX5YsxUjq0447f2eNw3m1OvjjdTR
/Av7YWn3fhqcCZHMuqeBkaueT3rsXp4G1YOPNyfrYOQ2OYFUaY8ZoLL1cIbH
LoysP/ftepf3DDCJ0JuU2o2RrtWv/BMuzIBzAonWLcjJp7wOC1ydAfFVfbv0
92LkwrM2ib+ZM6B5w/pEOROMfG2SmVTfPgNiO208Jc3R/PXblnAJzoIaiYVo
0hEj7WqOxHSv/IvqO/s//wCM/Kp3YkT99xyQXyGQV/gKI98THK899xbABZsl
AJgYKfw3T/1R7gKYWroyb8ZC+bLRcm5F4QKwsoF7jrLRfE7MCW55vQDMzUyy
QjGcFPY0jnLsWQCjjwcZL3lw8hA94ZEvYxE81kwyZAjj5K+Tij8yby2CkQPp
5iekcVIts+khnrAIMsX+qp1Yi5OBbQGnXNMXQWur3GlXGZwUMvg0veHRIviv
dvz3UTl0vLgP/qx6EWjLVQxYrMfJgDcv137Cl4BDiLic2GacFBQ7YDfvvwSq
rLQvYTtwUld8PHJ76BI4JwF2/ED2pN+u8L+2BIQcxjbV6ONknUTLmoXEJaDz
JCXuJsDJm2ts+haKlwAZqGJG2YmTAuuPHF/6vQQiFDOOdRrjJL/2mTMs52Ww
76n4m9pDOKmtI5Kp774M+FS139w+jJMndZ82Bnstg5GKx5U2tjhZu2NqCzto
GUht6+rqs8PJG4bnp9lpy8CTT1psyBG1Zxrsj7Uvg9tGHm9IF5ykOEVf5t7H
BAES2hFPzuCk3+Ou9OqDTOB73mlmrxdOfluQL4u0YQLLX7aeg8hvEyp+Uo8z
QX5BnbeoDzr+4y9TqRAmiGLNVZ3wxckBDSMJzTIm6LFsm+y7gJMHw6O3LFQw
QY7HviQPf5x81dS179U7Joiu0t0+g5zs6X3JsIkJNqXP+HBfxMn99+8MHBhl
ApXpW49WXsLJ8hXz+W6yLNASW5QtEoqTinZG7zcosUC64JvWG8gJudFfxzaz
wHfCcQ4Pw0kvQwXaOT0WcGoWkphCVvC3OB96iAWu/gl5WBmOk7HfHoPUKBbY
F0OmqV/DSfaWeVuHBBZ4r2T3LgP5VLCR79p0Fnjtw93OfR0n96zqzsl5yAJ/
4u6WNyMzD/AJFleywH3fR2ePRKL4vzza/nGBBZbo5fpGUThJbTU4LoOxQYX0
lh1ZyM9Hpab9KGwAB/zH2Mg8Ut1UWQk22HM24OjzaJy8H2JhemEbG3wNPn+D
cRsn96Zs6fmkywY7ywoonsjjT4U95IzYwPVLj8Yb5B2DH6/Vm7PB6aeWKc6x
ONm106hynRcbhF5I80mMw8lQR1mLgPNsMDB53KoPWfE8u78hiA1mOFUDivHo
euVWsAJuscGVNeWLpcg0gW06TXlsoPsYk3ybgJMv5ERrFYrYgGt2aQ8L2Ul3
4lDgCzZ4eSh7jV4iThaceuy3vpoNxmYeVpQg72uUL7r0nQ3UE99XxyXh5MRP
HLSMskHQNXPlauRkTn+D4jQbHAlZvWUR+Yfand8tGAfkrDm4ySEZJ28ZBwYq
8XNAtoGG7E1kdRdbgWAqBwi67H/5Ajksga6kvJYDcAOpTpEUnFQqmH4WvJ4D
xLyOOGgjN75v3tWmwgGq0d/DjyJLzUW5hOhxgNHqnxUFyOW2vJntthzQEWP4
USMVJ53PflfZeJQDru2RdLFC5rv57lWoOwfUh7y444Ns/Sq4e+MFDrhflD2X
i7zc5nAyLJgDvGZyGSRy9pjO/OerHKBu3Pu5E3lSeo5+OYEDcg0ddLjTcDJF
q/2/jnQO4F7p2SuBbGBWoq6SzQFhrhqyG5CH3GPfXX7EAWWnsnh0kaPCvMw7
iziAzzQ90hh5W9r+fpVyDohnCTw9jNxTvNErnOAASYevfq7IYXX8rM5qDmCt
5P7ijaz0/eetzY0coPHh1OBFZKF93tx8n1H/RL04l5EnC+YD+75wQHny2OgN
5M+iYdPPv3HAXZX+/2KQKy7we94e4QBHcbAxATnzS+yg+yQHLM/yhSQjX4Gr
7eA8iveQ+r1U5JMPsppXsTmg4SgZnYasyMvICeDC4LeDhcb/nLq9u/8HLwYT
OczWFGRBz7trLAQwWKZSuCEJOejOscNvhDB4Z/H9gTjkicb1CRtoGNw3sxtE
Ibvgo41J4hjcSNvOjkBu31YoyLUSg25F926GIO9x893jJYnBvLs3fpxHLk/V
Cu+RxuDuFcwVp5E3flp6s0cOg7rJvPgx5Dust4slChhU2l1SZY0sonZFU0YZ
g143aNZ7kS+77D17axMGN+iqlWgjzyaueDKvikHtzHV9yshuNU3Dx9UxaOGy
1LkS2UTF9ugOHQx2tD7WnEbX/7WT1J28HRhUHStO+4qsGjfQSYcYvAbmPtUg
i8+dNPuzB4MJzKyMVORryptv2ZlgsF3eUCcUecF+qvrDAQxaYjEPXJF7iYsG
mdYY9B16OroJ+eC0fqCgLQYd2TVVwsikAtfzCw4YNPojfnoc5feDyJubzVww
uI3r68Z/+b7q9UGPVycwWBmdZxiJfHNc7IGSBwaTKnYpn0D2ssqQwnwwGO+Q
cWI18kCEs+3pcxgMin76egrNN8ty+cSuCxg07t37oxZ5u3TBiuJgDK4ZqXlw
Dhn79Xrp2C0M1i7kz1eg+ey7+rJWYwwGvzhc6or8N79Nd/vqxmNwlBN46zDy
x6KGEbE0DH79b+HkBKoX8YF9XVW5GPQzb+EXRVYQwV6sr8TgSaXqlVKoHm3L
jd785QMGJTaZXm5F9cvIYE1O7EcMquc8iL6OfNRLK265GYMV/uGxf1D9u9N4
+lRLP8q3uT6TR6g+0m93ywSzUPx73y70o3orr+SerI7jMPTEoQ9hyOrErNAw
Dw7HTu3dIYtsPkFdshTCYXmC4yaHW2g+mu1pV16Djs9tkX6H6jsPrfRGuzYO
ncpOdRxA9wfxPMiJ3IHDlD97orsjcHIdbDwPIA7Tk9jzx5Ghz4hL/l4cmlvm
//a7ivK9WUY/7BAOHeLnnK6j+89sbNTUJj8c/pyVpXuHoHog6mZ/5SkO9629
s9rsPE4O3/a+rlSKQ56/k8nP/HByVPhi2afnOIwf3j8miTwuECVCf4tDUcfE
dd/Q/XYBL6nMqUe/71HocEH3Y6Fp1sbqERw2m71dr3oKxbM1aZlfgQvGPrBQ
m3HGSS3ze8pPlLigm51VuBaydmOejcUmLtguNvgpwAndX+pePU1T54IH99NN
ltB6YU/l4PGNhlxQx8ZXbAqtJ+xLNtebOnFBkVsHOgqt0PyJ/3AnJpUL7hMo
KTi3B9VHLQWD2QwuqJr0lZW7Gyff94T3293jglw3JW5170L1Vh6uW5/LBQf+
rHHagdY7N0srHr4q5YIpeuW8i2g9lNj+tGS4kQsKBR+wN9PByTyJ9FojXm54
8LnesYBNONmU7jU7d5YbSjl2r+UWQesFwbPsJ0d4oATfC4rgR4y8hL+RrtTh
hWMylqHRNzBy/8rnCnL6vDBoJnJTxnWMlNr8dFMY5IV9stbWj66h9attlo7B
Xl7Y7HdcvuYqWn8/jbCpsOaFm6fr//BfxsgQp4PRJd68cNS08mfuRYwMe9XP
zH7ACy/W6S3ZncJI85Yubq5HvDCFdFwK9MRI2V8tgscKkE2ny+54YCQp9n6V
TCkvzE2XOfbNHSNxzzyNDJIX6q/or7vgivY3q86eTvjCCyePBkV9OIKREee5
eq+I8sHJjK39FAuMnJ58L63C4IPtT831tqH1tdPp687tq/hg1ErGS2czjNQ+
LvRdQZYPZk/kr3t9ACPHzCVGP6jywb8Drn/C0frcWmXjAmU/H3x7rtXaBK33
3z0c0yky44OCP4y7buxE+2v5p5dsrfjgXvm++7VGGMkvqcHJs+eDEqyfAvsN
MfIVxYDPxIMPjtx4dMHFACPXfbegR13jg7Fe6reatDHythP9kMZNPvimuM9e
HpnZ3ZHSG80Hj26+FhuwHSM7mh3WbE7ig8YWCZpKWhgZ+fbEusb/+OCWtvA7
SdswcjLtohrtHR88qKB9uVwVI48wdviWv+eDN8p9EuSR62LZpUdr+SDfRsMN
sZsxMuf6le3FTXzQi/v2zzMqGGl7PtrAso8P7g/d3am3ESMJ86z9ict8kOn6
nb1OESNNpsu52GzUX98006frUX8SmsvduSjwVKQypo883sFR0BOgwNt28Q8c
0X5O6ogTa1CCAtf1SXA9Qfu9PPb5UlNJChTU3VK4C1njfrTHM2kKzFTf++kr
2h+afn/9+YYCBeZMfnCkIwd6rCncok6BX1JcluJlMJJvxTbXNE0KLGydNdVC
jiswkeTWocCjFjUSX9ai9icuXusAFMhfwie1AbnzfJdT8AEKFKgR4nSg/atG
eBL100kK3Nbr9TtQEuWT/JMPGqcpEDt7Y4cW8v4P7y9lelPgPsY1+gzaLx/n
n/119gI6XmqF41nk+BhLctVVCnRJOeEYhvbfa9U8L4Rfp8Cui0Pze5EftVxW
GbtJgRlRaTKiyCS9OJWIo8AbrvOMPLR/n0innnW7R4HsBeHCYQk0vh1KSs3Z
FKhc1FzxGpmvz+CrTi4FNmFCtvHIa+W8jIWfUOCbyje7jZDzKyM4F4ooUExO
LEUKWdP17rOBUgrs+5MeuMBA/X9YL1dWQYH+2zsWy5C79v3olH5LgXdFdyUn
IbuOLkdff0eBBbQj1f+eZ0zeEt819Z4Cf/P43XRAvrR505J9LQVucun8BpH5
moyK3n+iQB6DliYl5HgfezfVJgqUOvjQgoacXxrZindQoOvCMP0nHSNbKzyr
yrop0DOX1tmCvPzOtMz9KwUe1P5+nkBW+KjyQHIQjb/qzlQh8v5m4eSGHxTY
bHLO5P6/502d49fChinw54tktFTFyLt9Tf7bxiiQq18t8QZy9VDRyZ8TFGh+
6UREKPL4WJxd2gwFBqhaWgf8e54162uyf54Cu0NF8HPIYNlKj7NEgbVfHt/y
Rj7JpalSwkb9SdCc/fd8K1ZAQvoEFz8UM2mL+Ody2rzwKj5+OH9Arv4U8sDK
LnadAD9Utb8SdxKZX+blRLAwP+wNYX0+jrxVMX1ATZQfxhUlpR1Btt98qeU7
nR8a1Vr12iCHazhWJq/ih/uuGGbuR87X0y81luKH8Vc8+w3/xctobQ5Thh9G
mfXe+/f8b8mYk/hUnh/qWub2KyHLWwxEuCjxQ9Mv3Zmr/sXL9t0FxiZ+qCVz
8yvlX7ycs91rVdH5ttdn/BXHyDtuV2wvqfPDdLkX3YPIH864Gqtq8cOId8dT
6pElghQ3Jerzw2xl7/i7yAZXKFJ7DfnheTWB5ivI7jeHhZZ28UNr7y/RJ5HL
U/PHnfej9iZLb25GHrh3q1/MnB8u3OepE0YWeHi6+YMVP8rvdTfHxND4n6mW
bHLgh8FDXtEPkMNfU//rc+KHx3fON4ci51dNJsS58MORv5wkW+TllpLz8x6o
/Wv2D3iRFboT3PLP8MMNBozJblE03gG/w0fOov6y5N78e758Z1xLpyqAHz7W
X9V/ANlgxStmzHV+CI22GofQMNJN7M4fw1v8kOOi/GQP8u3VwX2zMfyw/KpP
kjDygBIg7ZNR/zJXziZTUf92VV1RfMAPy2yUplNEUP9Mc/y68/ih/U5OmDVy
m2XEiagCfujxNiuZiqxwbO/e6VLU38cPD18WRvEN/iT4tpIfdkXV61oJofY9
lUucq/nhcxm/UF5k5uEIO7yOH672O+7wfAWqP+ogb1cLP/zLyuoRR875WbL7
Uz8/HP9G4G8FUH/M0sO6mPywettFiyY+jMzcMa8UiAmgfDuy4xRyxQbrpjU8
ArCQK+QDL/I0t8ha5xUCMPmaT5kWL0YeK7/8ami1AOT7dUr8BjdGQjmPuWkt
AaiWHHenlcMhHEWq7ybqCsBOOaK8j80hApbX7dYyEIAL/XPrhlkcouhzb8LF
3QJwVvLUz+llDiFz03wrZi0A1SfD9w/Pcwj29PbTwmcFYOzmnAqrCQ7x6j3f
N6XHAvDwdUHq9l4OMddZzrpZKABNfxJPeb9wCLXfnqvHiwXguY4g2dZuDpEr
2mReVi4Arfrj/F07OUSsUwoBqwVgUcIZee9WDnFiQemu3aAArFDoeCZdyyGo
Ksa2t1YKwrzntuGjxRzCBCyfG5cUhIe47vFfKOIQVy2f3LZYKwjXcX2M5RRy
iKUA0ZqV6wXhzpGmJ0IFHOLHh27NHHVBuPQ2ej81l0O8dPYUf3NAED7fvOH5
izQOcTzhVuP4FdT+uHx+diiH0BWirM+4LghVYsN8G4I5hFhE+KW9twShuoyT
ytwlDkFeuKh8P14Qvq/MCDUM4BBr7d3DLbIEYbD0mmnCh0N0ye7UKnsrCCn3
6iOcjnGIg4VLdy8uCsKtNpr7txui9j96nOHxXgHfuO/LEmayiaprcXL+JkJQ
L/nD933ebELpXYlfipwwdHwsaRT3jUUUPq5V018vDKu2r1KFAyxCI7lv7Juy
MKRbhshMfmUR8JTgCVU1YVh3tk3ZqptF2DNcbD4YCEPL9xt9FZtZRJSHqNaM
gzD0X0/W8r1lEVOiPvMHk9Hv9zjzd6SziABmROlsmjB0frZ4vSiVRbB/Znin
3xWGRUZR76KSWYTg65pfQznC0Oqk0UWTeBah4CbTFVQqDDWEvdK+RLKIQxWN
5fnNwrC9/k203UUW8cplcyDfChGoY6d65bcdizh6LjX/jIgIPH5o0FfZlkXw
XeX+0i4qAldx+4W4H2IR5g+69f5bJQJ/qHcu/bZkET9+RbCAoggkoBU3dT+L
EDrTF3bRUARmiVjLvDNgEcXBxsUDu0Rgp1Rip5w+On9M2eDefSIwJLN58qoe
i7j/9KaRhJkIbLQSOWypzSI0p7V4Sh1FYOsnT3dBdRbh5H/7+pi/CCzbZKU2
s55FcN9YemF1CfWHizF8SYFF5KWeGK4IEYF1HfJGFHkWMf1SzzgyQgQCte6x
9bIs4hrzl6BigghsaLOKvCLJIp5ehjHOhSIwP1hBvYrKIqzjH7+tLhaB95/r
9fiLsIilbImJzc9E4KaN349uEWYRu96PmTFficCDtfKrHgqyiC6+NNG0jyLQ
Ja429iUvi8CiphJbf4hAIYGAh2eYTMKISxG7MiwCadun1uouM4mrAfanto2J
wJhnTpqCS0yCcqLKMHFGBJb+xzn4bJ5JiBgkjdtwUWFfsGv29hkmYV720Y6P
jwo3ZbSFyE0zifiN7PfPBajw/JapVdQpJiGx0j1jpSgVJnVVJv4dZxLSk9r7
umWo8EyZoMjkKJNwcjtTGilPhTk21/QWRpjE/d6stbpKVKgyn2rEg6zwUfBv
uioVpkwkjSr9YhIq2b1ZjvpU+HBb5dLd70xC1zpsud+eCl8twpd7vzKJoLoy
t1gnKiwvCR6P6WUSb+FIC3ShQr6VPzb1fEHj3WyZl+VBhV8y+T8G9TAJYz4F
m+MBVBhwrahxupNJ3AyyJcWDqFDePvW6PXL9dNSm96FUaFe9ZF/dgcbb/xdf
f50KrUkzu/zPTMK2vKbwZxIVqk5yjf7XxiTSVZmrU9KocJ36aIEKcm+OWsTe
u1R44Lxk2stWJuEcl+aQl0OFv0sfz/S3oPFSGqtt86hwLV38xEXkb8Fc6gIF
KH6Kzbwrkd08T/F7llJhf8XzHqdmJpE3cO+c5Asq3M/xERVAHj3U3ldXQYWZ
J7KDXjSh+DTwm1x6S4WHtbykPZG9duo/21RJhYKtw7OyyEUvz8r2fqDCS3kr
eXobmcT0ltxbUR+p0FBtyjQD+bwU1eVPMzpeblukInJHeaqhczsV7qgdb/7b
wCS0bNbJtXRSoWLKm4+1yClTj7GdX6hQWEHF7x7yQrTmQFkfFbZffdV8Edl2
I0EofqNCC9PB/sPIL6v33UsdokKecEq2DrLk8dYQwREqFHsUtVIGOZDj4BQ0
hsZTWgX5kXsyhvTHJ6gwkHdW+m89k9DT9pY+OkOFq87aPR1CvtO+wGyZo8Jv
mgp/u5GZPuG9O5eosIMdMNGC7Cgs9PoZiwqvD/pkNiD3tdc1JGA0iDut5vpn
kf9uv9nPRYMFy36SzcjgrPUTXh4aDBcM+dWB7ANW333LS4Pxf5U8BpHvC/dF
+VNoUOOA870J5OYv2UFqAjRoVyNwE0f9xfLdT48I0qAU5NuwElktQMUxW4gG
T1WoBKkhH9szZeogQoMdRw9eOYAcT3+uR6fRYOQ1TQOvf/8v9i1wU4MoDVrk
PSiIR54uAmuuidPg4BmHxgrkdaE8KwCDBtUeC/33E9nywMeleQkaHD52cqME
ul5X1sSMFq2iwbVVEq7GyGUjlj0ekjTIvfWlWRjyjxcr69ZJ0WAPHB2rQN5l
nfUoUYYGF3Ohrh7KD791bmkH5Ghwhe7FkTDknMmNkXzyNOjyx21fHTJvdNnJ
AEUa9GrQFz+J8k/L4aLtVmXUfxWekNfIbhsM9o1uoMEECd1kOsrf6g81So6b
kVecqG9CnktAO+EtNFidgY+oo/mg5GJBaVSjwW21jkVpyDfYPT+BBorfU+sd
vmj+GG8ffyCvh/yCo26G5lsgb2lS7w4avPfN73YTcn6bf0SSAQ1mWvDHWqH5
KeiDn6AY0aD+2jcX3f7N3zy6wu99NLiwwa7tRTfKjwvd4jkm6HzMYQ0bNP9V
dmdyH9lPgwomNupzyNGDSt8bzWiwrFiZaYTqx0FJveySQzTod3BtPqWfSQR8
0f/jYkuDcmttJN8iZ9+B2uL2NBi6S3LRfwCNb+2exnNHaJCmrM/6O8gkMuUt
ljRcaTAtVmlZcohJjKu4W744S4NKfNZJlDEmsWrc4677ORr8kFtsMots9PT0
8MrzNPhpuPHwjz9MInmrb0hAAMqH4Q7fxgkmYaAVnK8TSoMls1+D61D9jQEJ
XK+j0PmC/roeRfW8HEs+cDqGBteLWtddZqF68i41VSqWBi/N2Z/KZaPrtStT
NTiBBllBhbaLGIvo2/fI3iCdBrNagh59QPcHVUuihHxIgyYN/Efm0P2m0fW3
y4dKGrTxiB7PU2QR1V2WpunvaTBsV+3Hg8osgthfsc27mgZ/f9sku7CBRRRp
RPKsrqPBraU/ttpsZhFxPEq5p1to0HpwX6y2Brp/5biMiA+g8zsFu2QZsYie
793eLix0fGMt8f0Yi2g9bGi7nUODAiOZydPHWcSnT3lQCBeFDyvbLvG4sYjX
pf6iz3lEoXP9a5etnizi7hVGqYCQKNx/JEbvqS9aD8hbzBVJikJXY9PO7VdZ
xE+X2iDOdlHovn5wtcsjFjHuYS/zTEcUauXlb81+zCLmfMbeeeqJwpbJ1hs/
nrAI3lAapcNAFJ6KODbsXYLWIxm2cQW7ReF6YRmxrFcswqVt+IGdlSj8LPpO
x7MRxW+nQFOplyi8q2U9H/aXRXQqmMidfCAKz20+dIhizCaOpi+sXVgjBp/O
eSplUTnEoUb5MadYMTg2Er5k+5VDrK+e2TnLFIP3NZzLnA9gZNTZydkiX3F4
a9datvQTjDSe78s66ScOxy8SUd6FaL8c3HBQ9oI4VPmk5Es+xciwG/l5ty+K
w7DN1fpHS9B+7Z6ro1eYOLSOLCZSXmCkY0NX1aYYcaizL71g6B1Gqmx4F5/7
SBy6Wbfsmf+MkfUDcWp3BsRhjpHA6PtljLxi91bb9Js4vPlLVXCAiZG6raNw
6bs4nLy49/ASCyMfVu20sP2Fvrd9cV4Fw8nw3L9n6ePi8F7r5eJrPDipfdqu
NGpZHJr9vJQsJoyT/83LagVL0OEeE4uaK9I4ae9zwEBlFR32XuAxv7IWJ2kj
F/d8WU2HcxSF6csyOBnS03pIR5oOzS1cw4LkcNL2zVX/v/J0GHRA/ZnbepwU
uTJcfmYrHZ7TPcdD3YyTgSJFek776XCj/5HQx3o4ydExHNx6kA7XifMa39+B
k1dPtF7jNafDuu22Ewn6OBnzeralwIoOVxlfb/IHOJntqXNy2Z4O8yKH6rfu
xMlP1ZWJqR50GAt9Nb1McFIq9POf1mt0OGF9rYLHFiez8t0Scm/QYWWI6Xwb
smLHvHbgTTocuJrBzrLDSbXNklflYuiwO7rVU9cBJ3d/cZL0SaJDrrbIx45O
OOm1fXiPcA4dVmc6HHVzxUliYune3nd0uCMn4dAtb5y0LnzOWa6kQ1s8v17J
ByeHT/s6F72nw3GhGOUqZNroyNrVtXSoIuwTO3cWJ11+dN0dbaRDo8KkleZ+
OMnX/TwjuhfF28LiTUMATqan+C4b9tFh7jpzT9uLOLnlkKrDXD8dkkc2Lgwi
27Y9kHT+TocFXSbPpgJxMr8hMU1tlA4fLVg94Q7GyYOVvilt83TYc/DI4X/v
Z7+Fqc5fX6RDGebwpMdlnPQHo4d2LNMhux9zH0S+//qYxAM2He4r6PxVH46T
08/Nky7wMqCys41m8lWcTH6smrBanAHnLu38NHUdJzd6jk430Bmwy19Z1PYG
iodyrmW4BANCx7Etb5CHH0iL/V7NgAcS9eavROKk7n2huNeyDKgwtPsh9y2c
/Jo4GuOsyoAfNt489ikaJwvI+cI9agwoPehSoxyD8mOMp2mzOgNuqfnv5VXk
VbtkqExN9PvJM0bat3HScsbqdqo+A2o/qe2LjsVJWZljT0MBA8YKXc7qR54w
8WpyM2TASe+e8S1xOBmVfYOquZsBe1beU65HrrF4c7tlPwM6LPwRm4lH4wuu
e1p+kAGzXq1fr5OAk66POpvumTNgxeHzZDAyFz5N9bJmwJ9Dj+K4EnFyR5Fi
rKAjA/ZSiLQlZMHebUVTRxiwNZB3UiMJJ7sphs1dzgzIH7Sq8QzyBWcH2sPj
DBjfS5P7glwsEhu78xQD0ngD1+b8e/+qe7do4xkG1Fp54Gkr8kG3/GZRbwZs
V++v5iCPvXlPG/BlwFFGfaRNCk5WjLSo1fgxYIfwhEYIciSj37zwAmrP55jb
A2TFM4uxQYEMqHamyWECeTaVr/h4EAP6/EmXEUvFyar34i0mIQx4NdvGYxvy
USlV0dXhDOgqvDPmLPKWfXpbsasM6OJ4wCMGmX1un8WvCNR/sbmPj5AzPrnE
PYtkwEPBvWt6kT3nvYvv3GJA1ZBFoRlkbfnglivRDDTfzl3hT8NJitnNKc/b
DIhF7wiVQu4ITBG1jGNA2Sd7sS3IObk5W3USGPB+9w0+iHyutdhCNgnlE/ff
ODNkI/bbs5QUBlyghWcfQaZtrI8bT2VAvgFFbU/kPpvu4s/pKB93frH8977y
yeWfLa/vMKAYX+r0v/eZQU9mpv7LROP9eWjl9X/vF7sxsVv3GVA3Q+xdNPJq
XhF132wG9GyunohHHlZbY2mXw4AByj7//Xs/+9xR2RfmMuCUnlDvv/ezETc0
45XyGPBm2r8PTv4P5d5U2A==
"]], LineBox[CompressedData["
1:eJwd23c8Ve8fAPBL4drX6isKRbSMStLyeRpK0qCSUTZFKgmpSCkjZGenzCTK
SjLug6xrX6OQ7L0pI/N37u+PXr3er3vuOZ/n83ye5xznwxaTu1rmzCQSiXk9
8Y/4f1ruTM7GD84qFzRzxNxG6Tie9DFCab8+pAq2fHEizO//QG1J8Ra8mGJ1
MiU8XFcdk3rDDnz8l+4dJEz7ef3tb8XHcPrGQNjqCB033X1Qy8r0DMQ/3ZvJ
IFzyB2qib7yAHvOip9qEsx6Qq5VqPcDo6v1Tw8PE9ZbqK2sVvSFH4O2pW4SD
XcJpFpG+cHO2+UX7EB0XM+0xWyMFQLOEJMtRwrknXpuezQqEXW6c1T6DdJzh
9s8k9EYwKP5+1VE1QMfJ5ddNekVCQDpt6/HFfjqOZS82lq8NhWKt/OX/CAe+
8jIqV4yEAqPtAVt66dirbsJQYCgKZF3QQ+4eOnblu2RoGBkNtk1DTUNddPyt
kvvzEikGxh6nk+900PGXUfwppi0GVNcPzPz3m47TuWw/nc6KBXn5Rrv0X3T8
4fyP1KAb8aBOO2yZ2ULHCXc9Uw8eSwClkfBp0Z90HON/KLVTJBHauB2O2jXT
cXhDdMqu2vcwZfvh4l86Hb/UvvHxu+JH+Jef+GNfJR2/eLDxoyVPCiSeUR8W
raDjp2FVybxDKXBRvEr2bykdO7bJJ+tHfgLV5Ugf+yI6VpR3avpHSgfmP4HO
BV+J/MCVpurb6dDo0j+//QsdK1yUa3rblg6mHa0Kbhl0vPteV6NqVgYEFXPI
UVLpWCrzZGPAjSygl2VF2sYQ+fu+udGsKQtEQ8bOWUTTsUTTXMOBY1/g6sd6
y7ORdLxpNqnht0g22BUJHB0JpmPBA9wNO2q/wt2iWZKzBx2vz2uuL1LMg4qO
5yQeKzoWcfm1Iz85Dz5mcT+pM6dj+RPdrtkS+dC5TGl+ZkzHelVjih+5CsDZ
sj71mw6R31/rwoP7qFAdPvz00Sni+NWwtH3qRRBh1mFsIU7H7WLljqyLJZCa
+nH/vop6PEhST1i3vxTsQ5cKbxTX45meajrJphSuXjXdG5Rfj9neN+xc6i+F
CpE7H+vS6vFe+Y72SXoZpJrOqvWH1eOXMItaP1RA/Y+mpewb9VjJSJI9Rbca
FoWZ1GKY6rFs/MKjQv9q0At0m98xX4elhmrGmsqrIXx/WT3PaB0WsHGsX9lf
A+o7ku81NNThKZea0Av8tfDgXq+/RmwdTn77QPpPZR0M1u65YnasDvtN9m/Z
HE2Hi2d3V5a51mKvgHq999/ocOrQKyeRB7XYfV9e0J5mOtiz/LF+cKsWP3ng
z3KKqwGqrb6cPn+5FluvHRq+86gBjv05Z+QoXYvP8PqnFWo3Qklvat5KdQ1e
J38IzHib4cffEYOnUjU4grR+t9nOZhBx4XL/LFKD9zbUCJupNsPMpb2xE5Qa
bGRvPGP6uBl+/ad88M1KNc7P80wwHWwGe5+bfPhnNbZT+8lpin/Azw0/jXb6
VWNOkZgFk7YfoB/3ZcbMvRrHjlr1m8z+gKhVWmuaczWu912lmuz6CWWL/+hO
1tVYtnmbrUnoT7B60X5hQL0aDxjbtRjfbYH7kXtGmTmrsfM+lVJjrxbwc7tt
cmVdNRZkIWcYJ7TAWrbilW9LVfh4UqS38a8WuNYtGPRlrApHTxSrGJ9uhca+
J+5P6qrw1cd8CUbibTAk2n1JLawKT2j8CjA61Ab9S0HZqQFV2F0s4YnRlTYg
rafVSnpX4awiZR0j7zZ4M37wx7EnVZhCNuI0mm8DgemLEifMq3BF8Kd7hnW/
oM3Jl1VNqQqrBn1X/DD2CxJKnxsqKVTh4oCW+Rn2dpA1O1eqtLMK5/syP3E/
2Q4dUtcO3Barwmme2l6p39oBfMu3pLJV4TCn1diluN+Qp0jy1P9diYUeC1io
Fv2G+5nvKPotlTjw4fYdfh2/ITZixN2qsRL7OGh93rqxAxQPTHzKoVXipzaJ
eWd8OyCFtpWT52slvmF2vinUsRMchTR6nYMrcZ+JaWj3606odL3//pZ/JTYy
dtTbldkJYmoKkjd8KrGeQWwXdbwTvkQKZbu/qMQyux/P2e7pAo8XFs/M7Cux
qHQdc0RiF3g3/x5x0iWOT9DtU/nSBVznxiWUtCtxmFRfae/3Lniyb2lmUYuI
X/Kfp2x3F2w4EzCSqFGJeSUkeYtEu4Hn1OLnF6gSrxN5IDrk3w2bpLX9juys
xPl7tGsDo7vhm5jKzhqZSuxwZv+zoyndUNi1ctBiWyUecfwzEFjeDakxR/XT
JSpx/c+7GUdXuyFoj9m2D/9V4qjXN88E3eoBR+GT9pxslVg79fTy0Yc9EERb
+i3MQly/VPrzkHsPKBdeuy67rhK7/u0TVIntAVf88/ytNRq2vGTcNdTSA62K
32uUF2hYiU/vgcqpXkiZt9ZmH6Xhqe0Hdw5f6oUjckEkl2Ea/oCEfwcZ98Ly
2hP/xUEa3mTz4/iwUy+UnNATXddPw+vqtHiCM3thx7bNi1c7aTh/YE+RSlEv
0NarTiz+pmGHVYrdcG0vuOXQIK6dhkdk61pVRnpB/dnXb+vaaLje52zCsEQf
5Bsan2FupmGv+J06wXJ9UMMddKO2kYZP5LNzwpE+KAjNNHvbQMPZo+U2wVf7
IP6KEb5QT8NR6iePgG8fcMa1XB2qIsZHPtoYvNQHt4dnQsa+03BI9rF7Zhz9
wLR0X3msmIaLzU7xKm7sB/qiv+dUETGeogtnG5X6gc11ZYa1kIZrH5p857Pt
hxHzMTnLfBpelLlh3P20H64L6Lr65NGwzI9ba2l+/aA8GMSSlUvDT/faH76Y
2g9t2w4a8n6j4b2jHpm+Q/0gUhxdPPuFhg3CfTQN5vuhiZ4+p0zY+3TApCzr
APiFHx5wyaLhvriIXTWSA9CeZV8onEnEey01jtNwAA4obx60SyOuX9MQ5NlM
fN5xNbbqIw1LO/3co9M3AAVOUsYnCV/a2V4n82cAlF/O8RQm03CKez9nOWUQ
5FXU2As/ENeHhecsGoMQWLRyqPs9kd/x5S3NeoOwicNynw3hr5FMhfGWg9Ce
qFnERJiywLF8wmMQWJal7u9OpOHvaZvtXIsH4U2YBNfbeKI+DLbya9EH4Yb6
mM8xwpu4ZdK2dA3CsT1qmgNxxHxbKowVrgyC6t9fzkqEt289YbamPATOr1Ku
TcXQ8OX608x1p4fA5rH1ZBzhZ0803kVrD4HIhdZHuoTb2q60H7UbgvaZYzqV
72jYJ+jmZafPQxBZGXeo+C0Nu7deq2alDgFHpXCeG+Gn4ponA6qH4LOISpc6
YfuPBxUTh4fA+uXSv9ZoGraZlk1RWBgC82NOnXGErQ5slcpjHYY60Sdn7xI2
+M4hWC85DFxq5eEchHXY17z19g6DvnXC7bY3NKx14c+6fjQM95f3fPxI+PSv
X3/+XR+Gb03Wp7UIK/xJaZQMG4aojb6qn6NoeOfBmLOfEoehrenu+5eEpVxe
f1f+Mgxv9h8/ak54I+eTzHMNw6Cif3VUnLCgpu2ulq5hmN4kMr8aScM8oRZx
JpNEfAo1mzsJM0teCHrANQI9IT/jYgkv3zzBySw6AoZNp+fdCM99OvDcZ8cI
bJhuPWdFePSQxP2YUyPwJMhkfD/hJq1praqnI6B6ZFmnJYKo77D+yit+IxDk
PinznXBFR+vxrjcj0GbSWvOJcIFV8d7Z3BF43FH90pNwTlp2sgttBORa3752
IJwxl7yVo2UEmjuXTM0JJ7oG8YvPjsC+wTeKqoTfVXh4fVg3Ci0u+2WVCEfw
ODEr8o/CV9F/TTKE/SLMZtTkR6EYG4hzE/bq0rFqPDoKQ5SfOSTCL6TP9VzX
GIW0YpnJv+E07Jixv8HWchRO26RLdBK2XdihvvJgFKqEjgs0E7ZWESv2cB+F
gSN6AVWELV7wH+J/PQoXjGpCigkbV7JmRMWNQu3HJ+K5hK9RlnbIZIzC+z4j
mQzC2tqTMemFo1Cn5ZCcTFi952dA2e9R2Dnnz/+G8Mnt1eyaY6NQ8XRwMoQw
3Cl89mtxFAwKBQ4GED6UlfXPnH0MnI+ZjXgTVlxMujf13xiIBCqRPAjLoTfD
j6THgF1u3sGV8Hb3AGOW/WOwarXl7BPCW6vdWv1OjIG2OTx8RHgz/yNNEa0x
MBobXnEgHDhVHJFsOAZj//my2xEm13H2Hbo9BhZ2o3r3CDunXpatejQG7/cY
T94hPOP9xkHfcwwibumWWBO+aTWAR1+PwWGxMz+tCP9Wk2d3ihsDmY1p2ywJ
a8k4anGlj8G9v8KpNwhXsBRFRlHH4NL6jbcsCKv0sffvrh4D0oWL180JZxZr
yRW0jkG9i+UzM8Z4YiIfnBscg6COjc2mhKNd+gp//x2DiuNbtBkWMJDluMM8
Dt841JkZ9jzicGmVdxy0KJY/TQiviuAo383jkPP2eiPD9/+xDYjtGoc+a76/
DA/9vCj/WXkczL0cDzC+b5Ad7ginxkHAKCCS4cbgnqK6S+PwMsZMjBGP2v1d
nEbG47BPlYXKMFXT7vLUnXHi5xd/R0b8+xQK3jx1GofY97IajPEl8bAOUrzG
IeUSzwHG+MXGzyvEhI6D8O47B24SDq4KfbgnYRyWZgPPMvLFntxVXJQxDk4e
1fcY+fxrYXulp2Yc9J9NjjPyTet6/Uhy/QS0yak8tGXkD3d8z+SbgMVtXDP3
CWe9keE+KT4B1/yabOwZ+dL79tbs0ARYHVv32JGwXVN7SYLNBCg9Kopm1MdI
xjYepScTkGvHJvWUsGHAnatl3hOg6Reb8IxRr+dJIwOJE5BdVhD+grB4hSTv
9t8TwO01stOLEX+itU7OyARcElt4wKhPDrcvMWoLE1BZLZ7rw4j/2GlFS4FJ
KP/YLOJH2ErC3/mfxCQcK2RT9ifcudpS9lJuEqrSIk8z6r0yz0o3+cwkdOmH
Hw4ijCIyYw9dnYTRzhmxYMJfHJdHK80mQa/21QzDO6+q7te3nYSotH9fXhN+
t9/3yajLJAg/q7vJWE9Cgj/LH7+aBOnkdI5Qwl4z4nxckZPwd51GJMMk+k29
qKRJuN14SSSMsP3n9Ljd2ZNArfDwYNhASqKlu2QSZEu9hxk+Fe7LFdo4CUrC
m5XCGeuPZwVp9BDjW+O+zfCG57fsmaYnQSbvqC/Da/OtH7LXiM9fhoUzbKck
NbmfbQre3pebdmHUn43+S3+eKdB4+XlUgbF/fAyUHBWagqBYTY+UMOL5pZ9W
oLp5Cq6vv1U6E0rsFxJMOu+kpmB08Nf7dYRz9JRnFndNgdJ9nj2dr2l49+u7
Plf2TcHYpzlTt2AiH3WJ0mmHpuDlY/6Tc4HE/YCjo5Dj+BS0PLNs3hNArJeT
QvrmZ6agU+rVJmU/Gl55ojGLL05B0e0wMfZXxH747bmfiM4UvF+Q7473ouGB
P7k77A2noOz3MytOTxrWk5v5XmcxBeVhqkVH3Ij9/+YOg513pkBqIm9M2ZWG
j8cZLbywnwLT2k9/154Qz1e/QwM7naZgw4F73QGPifrUYi0P9p6CYr7rrzbY
0TD/q6PGk4FTYPiqxZDdhrgfl9stnYmYAk6d8qPlt2j47pFe+bUk4vvvXNTi
TYj6kC4Msywjrk95O9F3jqh/o/m9JTVT4KF59M4eNWL/iJSrEWsmxscvYnTm
OPH8QXnD1NQ7BVyFKz9/7afh7n8PrVSYpuG6dVOvjwixXyumrw8nTwOz1KYC
JQGiHu8MRf/hnYbecNGAFE7i/tSr3ZgkNg1tayYPlpcqsGvNviMCR6Yhrq7X
Sb6tAs+x3fpx+8Q0nFDbcPMwvQJbHY+1qVCfBs9DCfMCFRX40ldKgrPuNJDe
mZjs+lKBpWLGuYccpiG41VF4zqcCl9q978xPn4aOwAtH+fdVYIclT5OInGmI
4HwnXyJTgbe7WvU/wNPg+725VX1TBfbxkx3dWzMNPuXP83+sr8BayZlzSUOE
t9x9M9pYjrs6Mfdr8RngmmLi32pVjgMtYvxtpWfAMeua2u5r5fjkuKvARdkZ
2HP35yLX+XL8flF1I+fhGdCVfK+ptacc3xGqlnqmPQOit6zUpmbL8LJ6y+Hb
r2ZAIczfI+RBGf5E/0ZVD54BL/K6kf9ulGEjnchj2yNngOUL78A97TL83dzg
dG/SDMi/ZFVJUyzDXk/7tHRLZkD8LJOb3mQpFs6eslRdmgG6N89Bj+uleN8W
9rDNln+g4cLtUUOxElx9v8ej5e4f4NEcM01hL8FmZXkPghz+QM3yyaWff7/j
kFt3rrK/+ANG/zXur6n8jhe+NG6Yjf4DxV+VshTtv+N89ejX1U1/wLchylm8
pBifstsX9Bj9Be9zH3I+nS3CuuXXfVv/m4Wvi9+K4jbm4939tD/S4rPgdz91
eWtHHl5lVtK1k56FxCOvJe7H5uFYFR4p3v2zcOJTurPnzjw88oX67aTWLBj1
kbeHKefiR/Hi/Z99ZuHbuS28DRo5OPJZ92F3pjmIzGQ+z6qXhX8fNh/eOzoH
73S7kw7qJOESvHbn1NsFsHke4mYs5gncs0l7PyQugLK+hsxxQS/Q3qk1x/lp
AVY/KDGXkn1gKDjemZ6/AKnKnsdCxv2A2+qMz7W2BajviiptaggCbcGgD7ZC
/6Cuuf56m1kkDN6U7ov2/gfGU276o2PxoBBd954p6B8kWGVsPXktAR41Ot4y
i/gHvh6hu/mrEoBLpWpmx4d/4BeTr0N+nwgKAjZMX8qI43epHFDSSQLHgm9i
VUyL4BMU/tcm+iNw8J/TnX+wCOpXpz7saE2DQwITLw+4LIKlv/qLbazpYCXo
l/vAfRFCFgyKavamQ+UGuuhC8CIsvHi/Z6t3OniJXulYSF+EGd8DJo0HMoB9
23XTxdFFuPV4/pXMs0xQll4NOvRnEUItX1NrkjLhpszbkkeLi2Cf3XJ+c30m
VOzo3rZEXoK77r90cjZngaec+dDStiXofVb4+HdWFpCVb99eMVwCO9VmqbGG
L6B8kCf66I0lUPibt2fn7Be4eehzrfOdJfAd+uzD/182VByZll91WgJrjZGR
Ht1s8DxmP7MavgSZRhOHPX9lA/ms8wNS0xJks+dYi9d9BWUNsST0awn+5U7f
FR/7CjfP4ZanPUvQ1/dwdy05ByouMB1iml4CHdtXFw4eywHPy27LTDzLcMhe
dp/mpxxgM3j1bJ3aMjTvWZzqf/gN7D62RJSdXyae97qEzf2/Qc+CZNbLK8ug
5cXmEZf4DahBuQO8pssgcXetwrCBOJ42eHbTk2WQm28Q6pbOhS7F4xv2Zy2D
sYiYp0lJLpx3fSW/kLsMtyTFc1l/5kJeXYtaXtEyyM6xldkM50KI1d3Hx+qW
oTSie1MYdx5ovIvqOjeyDNfbybFwKQ9yOOeTLSRWICngXOjFpjyQ1j1eskNm
BX5YPeZ1682DoMRXv8dkV0CZnLnRfSYP7hyTotw/vAJR8c88JnnzQeqBpr2L
9gqck53ackstH/x7PkKYzwqMtmVtMkjLh1X5eR39oBXQ77v41js/H245H7cV
i1iBjUcGFrwr8uGUcGt8/PsVOLpyJYm1Kx+Wz7FypBevAMuPC5wTXAVw85tR
E21hBQY7rrk0GBQAb4OKqThpFcT5nCclLQsge2TTjB3bKvyIE0g/db8A1m9q
5ZXYsApdp95/Y/IogHdPNM867FuF7z97PXRSCuB0qHxb1aFVeP1lURG+FMDE
Z27LLcdX4V7+NYXFggI40k1zr764CkMNvXYTtQXQcuJ48dY7q1AeUBbSOlEA
LtckNB3tV8G8RXmr9VwBSNuvdtY4rUKbolFk80oB2CXmrjh6r4LkL10vOS4q
UNj3HaxLWoWYlls2JBkqfN3CVyGVtgqf/U1faslSweDQpPajr6tQ52FT77yP
Cim3PtptK1sFr5K0MSOgglqtZNrj3lUQWx3YZnSFCpMDTEAfWYUcZQFXVz0q
hKx11kjPrIKz2atxF0Mq9ClEjdJJa9DfOlbGZUkF7zOPHsmQ12Ai3Cwy6jYV
9prosDvzrsEPo4saZFsqPA0SlNkutgbhnC9Ido+oIJMy88V52xpMlsQZ2D2h
Qm1J/cnG3WvwyXbovKYrFTbN+Zg8ObwG94rdvWNeUuE7z63pxuNr0PGaT0bo
FRWsZM483aG+Bq/Xb/tj7k+FHB2W6CadNVjR1fv4NoQKhvd6d+80WoPBfyK/
PMOpwOpVlOdyYw20f8UWX4iiwuU859adDmtQ9dtW4UEMFZYa9W8+dV6DOMe2
iZ9xVIgdOzjf/GINZIzONG9IpMLU5jnBZ0FrQLpd9Eg+mQqhSk1xPyLW4L9t
ThbsKVRQuZCxd3fsGowejm0sSqVC/w3/omcf1oB/ZKVJ5zMVfJ7eufgzbQ3E
x8cf16ZRYV+4RufunDX4MGDesjWDCm3pO++44jVozppYuJJJ5KuSvPKzbA0y
vyeO3Mgi8tU74C1buwZrV49/0/lCBS61u+tYm9fAaXfsW9FsIr6U+Ucdv9aA
+erPr0WEm/mezmT3rIHgJT7y2a9UyHUgW/kNrwGH8e3XXwlH//LvvjG1Bj5v
50zZcqjwHG3URfNrYCeR6HCI8M2EmHrh1TX4Pm9Sd5GwNItQvCMzCbWeZL6r
TjjsQGtnHwsJLRw4fUWGMIfVG1FNdhLq4Ol9Okic3ynK+GoBFwltpNhPehGe
rN0WtINCQmNPvN7wETZhGql9LUBCTR7R7o+JeJv2feJg/o+ERHeLJFQQ4ztl
YXvqjggJaUtdnlkgxp8TpuTatpmEvLG/BRfhnVWLBae2kNDxfKZ/zES+olao
/zKkSEhnU9nb9nQq8Cg83y++nYRk5oYvhBP5fmZy+p73LhLadcRiRZmYj7/B
nKnzciTE+0IiMo+YL4vyuiHTvSTEXT4isoWYT/XdOkZHDpJQ3cMg1+AkKuQb
bIpKOkLEfyldLZaoB7mArp+CiIT+GV1PDYyngsDczQvjp0jImPyPWfQdFdy3
y3rrqpOQp5gLLeMNFRb0pstKz5HQkXjcujuSCu34oUr0ZRKa13/vUP6aCudn
jj7i0CEhcUuF+sFAKhRKMWc76JPQpwol7hE/KiS89JK9YEJC0WUPcBCxHoTz
z1vmmZOQhmPDwiF3KnhN8CfIWJLQr6LhN9+J9XPnUuQmkg0JVUXcf+/4mApd
boY61vdJiMlcqTz+ARW0ciSDWxxI6OTlK7T0+1Q4sDmFM92ZhP5+2th5+xYV
SIP5i8beJHS07fWSpS4VbDc+U6r1JaGy+YausMvE+j+ransokIRmffSM3l+g
Ai2tZpg/nIQe5zLZm6hSIfBRR8v3RBJymaTFn5WnwvrUWEGFZOJ6ORqCtjuo
4NBpcTEqlYS45tV8HSSpoH9ystwui4Ry910tEf6PClI8pK/bikmoVlJ8LG+5
APYlvpL9VUpC5bq8VkqzBXBcRTTen0bExyTZ4j5eAEZ3lAKW6kmo7c7JI0m/
CyCq1voWvZOEXpQ5NfTmFcBHi8Vu914Sel321Gt9ZgHkrnroHBkk6lXf8+HC
B2L/lYtTfT9B5LejxVUntAAE/VrFnVeI+d1DCZ+4WwCSMjdC9jIxIfcqd6to
8wLYi/9yDa1nQr4mh3TE9Avg4iTvohYXE8q6izt8VAvA58Kppu2iTIi33ipe
WJi4X1AyPZuUmVCdiW+3e2Y+CCShtZdHmFAGTevzusR82Ipq7QExoYQY1ktn
wvIB2QybJJ9mQmO8gmKyTvngVC9+9Kk2E1rc+jdA7Vg+/PX3md5lx4TKv+bJ
6BXmwbodIje7HzAhvlETG+nPecBf9L4j5DETShexls58kwcK08VVTM+Z0Frk
tUTOR3lgrfkv4WcAE9qrdM3mg3we9PNZ6D3/zIRy70YeE/XNhSG/ux4ymUxo
TwoPUB7mwgj3w6yqbOJ8DldNsWkuTLD78AhSmVD4QjeHunIuLDBlFMdXM6Ez
EsXGzB3fgGtmZWfZMBPS1cq87iv6DXhs2HSsxpmQrA/H6BDTN+CboLjxTDMh
Nx/rjNnBHNgwItmpvcCE1l322CqVmQMSPWeCBlmZkadc1tUK1RzY1/B6iSzF
jH4Y64Y06n8FpYtvt6fKMCP6nksUiaPE81Nt0hXNXcxoOaHKV1jsKxypzPsc
vpcZ7XXjvcHVmQ2nirtNdx5jRhrcLE3z17JBL0O2+qwBM/Lzil5MVvsCzwJL
o3zDmJHPqQWblI4MiFWSUvkbSVz/5I/3M18zoKTNtVP3LTPKdeEwG/fPAFZJ
tHVbIjN6+nvhH+l4Bnhl5r7Py2RGP3cXbEt4lw7BTZ8zhmqZ0cLgQjLvxTRI
2hBRcZxlHWpMVNkzMpMMdRF3/s7dW4cyPlbFpx+KAp/4kPoE+3Xo/K3C/FqN
SFD/RE25/HAdspPccI3LIALKinjMM56uQ3mTybvmnMOAOvSp+bbfOiTFJRnf
mRkMn5Qms/tS1qFLqVLTHbMviZ9T7j5sGFyHYs2UtEeDbmANjnurqdfXI7LZ
De/6tRj8mKlgc/FBFtTCp6n26nwO1vgvW2rLURZ07eHS23qPHLxJ9vOup4gF
zS2Ec/4pzMH5OjEHVU6zoL8rAbsb937Dy5/druReZkGGzKs8fwRz8ROD868y
7rIguYKPAaca8vDTvM7l2AQW1PpB8PGKLMYX6S3rmD+woO77CZqHTDCWGKRz
GKewoGTXmGenQzAu5C8RFs9kQbGyeor0FYyZrJIUIwtZ0Pon7bPq5oXYVfie
ddAvFiS9RU72hGwRdrNnbn/Ox4oCH7J+C04qxjNTJZt3C7Ei/7nTVJWiYmxg
7WHYJMyKLA8uiZa2FmNlU65eKQlW1KrUNm7O8R2PXdwwUirHiu5yrupNW37H
l3fvXGDTYEVZxcak5S0luOj92MG0C6yI22KQfkG5BMtJfn6sc4kVhSRH6jqd
L8FkEcW1JD1WpNed89ngUQnOY1NhVbdkRb47ezyP15fgrb2agj7urOjsYSus
Y1eK/QwEtRW9WBF1/et/Yp6leLn1R2j7K1YUz/QjMTeyFP+o1xeVfc2KMoTc
Qu8Vl+KXVPOttXGsqM0hIrCFuwxPhT9UoBSxIpWojxdMosrwdaEjtjklrEhk
YSHbMrUMV/qvZhpVsKKw1KSsE9QyHO/x/EB6HSsa3pNbeaezDOvYv1LR6mBF
4r+zOqLEy4kJidEIXmJF/1TV1vaHlmP1mRzm1VVW1NDMyWYWX45/BNXn3GBm
Q/Kp6hY308vxxI81qcPsbOhHw8VvfyrL8abrBivdG9iQyv4v7/mWy3HSqn3m
WRE2ZJq2yXCSrQIrvntl+WUzG+p/fz4oVqACn+3Nb/aUYkPKb+05X+6swI8s
RT/J72VDSyOJTy9pV2BWzn1m4fvZEF9pnnGbUQUOSFEXWXeQDW1jKl7af6sC
J00+dP8BbOi3TPSalUsF/mnfYuB8jg2FdFI6aAnE9Vxf81bdZEOZb72G1UYq
cKFkaqmiNRvK13S5zzdTgTVKSx5H32VDGir37VP/VWBT8t/Bew5siNlPI9qQ
TMOBvlqFwi/Y0JRm5/dkSRoWU7BycPVgQ2JmKme5d9LwB/qz3WNebKhe7knt
cQUaLhRMD8MBbCh6qi9A+ggNT0bw3rN4y4Z2fpyLrdOk4UdHZGTqY9nQkdlz
byq0aZi1Q+X3wUQ2VCumoBCsT5x/y50z3KlsKMpOZzbWjIaTi93WHNLY0PGJ
xwIDN2l4v9mbL12ZbGi9TH/MkjUNa7yv3pKVy4a0r4SPvrGj4Ra1vp+bqWyo
6ebw652ONGw2svTKo4gNsX5+6fvyMQ1PeQucnC5hQxGCizW5T2j4seyuRb0K
NtTFJXGO+oyIp+54WkkVG7JOPsUS/IIYv42ehVwdG1L7KjZ12IOIJ/NlA9MP
NtR2Ne4Usw8NN+Rafc9qZUMiy2VsGr40vFR0NuvGbzZUePZKj6E/DUvRdieI
dLOh8IOd9UcDiXjruUNq+tiQQbJrbX8QDdv9nHB/OsSGlF6O/Lj6mobfdNQ9
2DfGhuJbzg8EhdBwWX/azYFJNjRTZPcvPJSGJ8YCdMP/sKETcZ+4rcJoeMNf
W3WNeWL+hNsl1jP6G0uXDq8tsqGfLFZ7GO+/bzLv352xyoaCo7RUGO9r/dk3
bDZnJqPuh3PBjPelOZR5bmFWMnq5O/Qxw13/taxWspORKMsuDYbJ4t8mnbnJ
SDCylpXhPdIRXQp8ZNT/4+NHxvtaPdnH9F5BMtr9598hhl0VrxWHCJORypOV
LMb73+TDRzPPbCKjEl2yCMMNx8Xil8XJKIn60IoRz+KZteDPkmSUcZSayHi/
LKnZ5WYiQ3xedKGO8f7ZzjD2RoUcGY1ovxgMJBxl8Vzn8V4yst5o0MJ4n116
2+yMnBIZFarNfGW8797gJL0r+CgZvStUP+XLeH//nG3T6WNklMuaPsd4X37D
a4hr8SQZ3SkQCme8T88JS54w1CAj08iMr56M8b/17uS/SOQjeGE/o//D/t66
vvQSGXWk6iS7Mcb7RS5jlz4ZsY7+94jRD1qiZ9jPW5JRmLVx62PCUq1BFsm3
ySjVe2gXox+k0WV39fo9Mnpfd86F0R+ImlA6+N2RiM9mozyjf6DCmbfs60FG
OhrePYz+jwV/1PgxbyLf4Q9v3Sbst9G5468vGbV4O61j9CdyJAzq3geSkVJf
eAqjf9ElA4V6IUR+n/XfZPQ3yPIS6dwRZMRi/ewQY/73KDHFFr4ho6HuN5KM
/oje0Z7A+zHEeI0fSjP6J64nvz+XTiCjM1+NVBn9leSz8XatSWRUQ/7syui/
NGq5mfukkJFET00Xo1+zrGuhDWlktO/4fhOGpYxPn57JJKMLH26xM6xxc7ty
wlcy2i/N2sro/9jdZd+hk0dGVmZJ/+8PRTmMbOTERP6+rV9muNS5ioNaTEYi
+9svM77fZbU9w7CMjHLKZn///3pX3XSZKgmfU4pkxCOs2kOKqyGjqDQTP0a8
insh6SSdjHyo5woY47koHnVhoImM+o60yDDGb831b86jhaiX+Sk6Iz+e/65E
72gnI/66YOotwvEDGapVnWQkVVU7xch3YSPvuHUvGSlvz7llQ7i90DqYZ5CM
1G857mX0fxZSaYfTRsjI4K6qGqO/JxAp3as5QUaBj03THjL6FZ7Pvf5Mk1H9
+W13nBn9HfuuPa9nyShReewFo9/jeiHiacsyEf/Xq1WM/k70kXmZRyR29OMS
mZlRv7k7LteJrmdHvw79eMtYDz82pDsUsLGjA+HWSZGM/uA6HjFDTnbkEu0m
HkuYZ9qqlMTLju74jZA/MPo1HeXWsfzsKP73/ZtphI1znuX1b2RHxz/HhBcS
dkroMPHYzI6OpJ+4TyMcFniYY8cWdjR0iKWxgXC99ayO9XZ2JDfss3+Q8Jiu
FolnNzvKt6hBM4z6Ov35/Wd5djSisbV3hdE/2mI5N6PEjiSkU1c3RNDwNZ6y
N8GH2FHlhd9PpQg7Lm1VVVJhR4KuG1L2Ek5rbg96qMqOcmfPUjQJVxcfPCx6
hh3FupVqGRMe+hzSk6/Bjnz/Hte0JSzudXEP6TI72qu6/DqE8KEHqS0xV9mR
07ojAx8Ia5txPD2hz45OBnuwUgn7qpTUupuwo51SbNVDhFdnDlhz32NHi/86
19QiaVikK1jgsx078kQq5qaElWqmcy86sqOe6JXSJ4Rvv//IHuzCjqyev/PP
IewZTE7f/5wYX9pe1p+E45+Z6/x0Z0ftL5/7zhFu1xd/L+LLjnL++EwqRxH1
oeZ0Pj+AuD7Ju0mf8fsBSq2z11+zo4qVhj4XwhqUoJMxUexoIfLduyrCeSWs
PTIfifl5KHnY9g0Nz/3MWfH6RMyffbhYFOP3E0atNk6kE+czntpXTjiRr+5i
Vg47Mols59gSTeznBqEYlbEjRyVrzj7ClffO/IqjsSMl/UPiwm9pmMVtaY61
hh2pVxQHnSP86KOhXE0jO0rSe/81n7D5gswb3W52xFW/EJHyjobfcbbl5PcR
+UozMBsj3Cbm0yQ+RMyPh3uRbAyxvlSnOAcm2FGi+LjmF8KHAnMe2S6zIxGe
Mq+WWGK9J1iFNK+xo4bGu+nb4mj4c86mDOV1HKjNVC/OjrBU59PhVXYOFFUl
xCocT8O8u8/oeP/HgQJFTELtE4j1Akv3J0Q4EOaoHKQTfqGV6qcpxoHYrn8D
hUTifuHIV/7fNg50Pr5u2x/CfaWt++P3ciCZvOaUwCTi+aHVW5NNiQNJhPeL
kD7QsO7Y0dtWBznQOGcf/S7hWv7YeAXEgfK/LB7RTqbhb4ZWAgXnOFCtQPgy
pNDwX9tN8hKaHGhgwDexkLCce63688vE98OudZ1IJeY/Za/rGX0ORPFO3a71
iai3f4tTzTc5kOV/n4T80mjYNMi7duI5B2pU/7Ma+IXIDxfbtkgPDhS/wYVy
MZuG+d1cH5/2Jq5nH9tD+UrsNw4Pt78L5ECsikak6Bwifr0brpoxHCjzEnPa
YB4Nzzb0tKzEcyBPE99LJfnEejlrIJ+cxIF6hLl3JRQQzy9Hr7Qzp3Eg2hWf
jPuYeP6ROKGUReVAp5uNmlW/E+stnOpjVMyBJkGRplpCwx78h3q5yjjQpXuR
d9RLifpfv8ffvIYDJWXKU0zKaThoUGxkQzsH0vJ+415dRcPnPy2+efiPA8nn
N0a8aaZhaRmHv9tWOJCtXk/J1A8aXnk7rd5A4kS80cMFZ1poOCVgaH4nmRO9
0/pjxf2LuH/a/9Bs38CJ7kTXdfzuIvb3cc0kTxFOpL0gmmrcQ9zPLGpWFcU4
EWd86+hoL3H/0yn5+GobJ9rSaMQrOEjDJYczWECROF9S4dkv48T9I0v22ugB
TpRsqfLvziQN35f9kBF6mDje53SZ/DQNbxV/Zzh1nBMVTmOR8r807MLs+y1G
kxP5Xjc9cmGZmA+a5e31dzkR+XXsmzauSqxw85CyrS0nIk2Vu43yVGJpNs51
XfacqPtT9sI6vkrMr5oSlufEiYZMvjSfFarEo4UT3229OJFw36/mg2KVOCrn
vkh3AicKWO5vjt1TiQOvnuw//4ETZVOq5pQUK7HnnGBafgonupRRxt+kVInt
FLNVwzI5UUXN7egdRyrxubQFmwtFnGh69iI+eboSr753Li9o50S3Ii/4ahpW
4r+nzgfu6uJE6XxVJ5+ZVOKRfrHr4b2caIcSLSjPvBL/kCycsRvhRKZyyjcv
Wlfiz2+ZxXYvcKJFisj4ysNKbBTqYRchwIWy53t7noZWYm0lHSD/x4XIYy93
3IisxBrN2zkcRLjQTFlEpe7bSnxQoPKt5hYu9PxlnZ/Ze2L8flxVZHkuZJR6
+LJATiX+7h6w5YE6FzoQ6H9m8lclTuHsiG08x4UeizT1+3dV4hD/nVIKmlwo
v2CLBOqvxFYR36WHr3Khzf7ev8onKjHl0+wufXMu5PRyxciFuQpfa9ZVgqdc
qGgqpi5hdxU+pZf4NfI5F+JYYyuT3VuF5TtnlBfcuVDlu7vLJQeqMPOw9+H0
V1zow8XtXltOVOGk5QIkGclF3N+DCl7rVeFZya1n2bK50G4JjjFnnyrckXSn
2vQbF0p4ZuG8PqgKV8jmnSvM50LbZW0SIsOrcNSByxcffudCP8uUV5cSq/Dx
s+5XRuu5UJVQpr97cRX2tR0xrBvlQustpEdql6uwTFGGXegWbjR/THuz4ZNq
/OljhcLRbdzIhjNHg+ZRjRVDOsZ6tnOjsZtWOacDqjG6xWEup8CN7HIern8W
X431hEyulKpwo4ZJskZvVTX2seRT+qPPjYxPGIRcEKvB03w28+dDuJE8L5k7
pb4G55nIPmLl5EGeAdE6jtfqsNH9sOTbPDwoQ5d61eZmHWZ9se5XEx8P4ov4
ZGBlV4cvJrQejhPmQZf17VlNfepw36DbCkjzoI4L9vuv5ddhrtsdTx8e40EJ
p79f4uKpxwYP/DzGHvCgT1uFBpmt6/E6z8Wvlx7zoBMVrq8K79XjpDDzodwn
PKjpK8+Ghw/q8cy3w2deuvGguW87uNtc67H78iCHdBAPMvB5dE07vB5/foZ8
DT/xoHi+wFe8pfWY5DMd3NDHgwSV3387u4GOjzNLk54P8SDbW/aq90Xp+IWj
3q19YzxI/jCfvq8EHbOZfz8W/IcHVevMmkTvpGMeldcTV5h50YtC40IJFTre
PKWs1irOix4GuDzwMKFjA4vbmS8leVE9fw00WNDxu/YYsUMyvIi51LqR+xad
+PmLYzZCjheZYuNi7ft0vDu2PebaUV4kPfYxeddzOj50+elSpx4vmnHcLPz9
LR07VWZZ+BvwItH5xAb2ODqmomE6MuFFfpccDkIiEb+sVlKMJS9S3p0fYZ9C
x2dYpa6YOvKiWm71HO4cOvZy0ikUcOJF3W2t7WW5dFw947OrxIUXaVJ12m8X
0PHFzlmmbR68KLJihNetmI51cso/DbzmRZlnIoaaq+g4Qm55Y2g4L4oJUHVZ
qqHj9ngFt9NveNGPey/O8NTTsWFAuH5SPC+aE/fbs9RIjJettkwniYjPxlK2
uZmOe5yZ97Kn8KJZ67/CUT/p2MLqFtkqkxe5n3d0nWqj46Sut/dFvvKiwJqS
Xud2Oh7RbuqozOVF6/daLs3/JvJTQ1Z/TOVFTUtZ+QaddHznxNEvu4p5UZX+
O9GMLjpO+3ZPor2UF83vq+aa6abjGflEbx8aLyIJu7qJ9dKx/SZek/F6XnSo
YqX/SD8d/8gJO2bYxItsm3K1xAfoWOnK1i30n7xoa7Js4hTh0OmPpBO/eFHb
M5W2tEE6Xni1vyurgxdtpl8ZNhwi8rMTY+keXnTgzLXaFcLfytTehvXzolc/
cl94DdOxiGnDE45hXnT/rR6ZdYSOH63pGziN8SLvdQlXbAi3RfYfnZjkRYMR
zy1phA8r391s9IcXHdxvdIxvlI6jmhaW6XO8SLtV6tdpwss2ru0nFnmRb8nh
/bcJX+Pmyv+ywousrfzOPyPc0VRZE0SioGILL+kXhHni/Ao0mCnogA5HgT1h
uHc5lWU9BZmPSvFrE7aBjW+oLBQk48cpvY3wO+4OnwdsFLT6juNfDxFP/a9Y
JwV2Crp366W3H2FS8g3rYQ4KOirF0bGTsILj7muxXBQUMbxjOosYr/Gp6bP6
PBSUgN+VyhIOFMw+LEihIGufY9deM/7eqOfRrho+CtIRXPwySuRzJg1E3QUo
SH+2oVGB8FaX9ZwgREH7YiezzYj8a52jLc5voKAP13yNPIj5ei7qO5ImTJxf
ntwQ1kfHWcNabZYiFJQxVM8VTsxv39f/KrduoqBhygN+zx46Pnk55kOwOAVp
XRB120vUh91Wi/BzWyjo+q+82fEOOo6f2vmSVZKCItOeKIcR9cXyKuumozQF
iUU3HflG1KOS/kOdPdspSCi9g1mhlajXHSpqIzuI8Y8vxL0m6restFzmmiwF
0TzuPJNtouO5IJ//hOSJ+HgEvxs20LGMiSZbrQIFwdz1kafE+vBcbRsARQqa
rwya9asm1ueBiQTJwxRU2iCn3f2dqA+WzNftRyiIt2pA1LuIjpMbH7i9VqGg
EWfNbklMxxw2TOZsxynosvueR1sZ6zdJUGpUjYK8Cq9oXf5M1IdDq0C8OgWt
C9v+3IFY/7tVo9dd16Cgw392NHl8oONX3TK9tRcoyCrlx9ADYv84L3I4NkOb
gm6rShr7htCx46+j4yY6FCRPc1M9HETHsVFIWUCPguYE/2xo8SPGJ3aq9v51
4vNrg8HdnnQcLam5qGhGQdoxE68UH9HxxO4bWl/vUVD2+qrjnbp0LDxh+ebG
fQradpbk/OoKsT99th76z56Clk9Kre7SpOOQPbZPHB2J8yXGTRxUo2MVJefk
gy4U1HudBBH76dgXgpjzfYh8coQE23LTcQ4p5Jy1LwWNtS6YbCcT+0lRWNgm
fyK+9KODtczEfJ2MlnMOoiDTXT3yE/P1uEPtg55KBDFfarMRDt31WE4LZxS+
J64nnNP1Jb0e15qNmpQWU1CHzRXxnafrcVmL1tmIEgraZR5w9RbUY6yRu+9u
GQX9an3bFnmgHqcpvly/sZKCxB8p/KmUqccB62USrekUdDcmtt6ErR5fjjcZ
FuiioLoo1e3sHnW4rbf1rskKBfm1+Q78NqzFDVeP6RxYo6A9hscsLTRqcVVV
EuJi4kO77geO1ivX4vzMB3zZ6/nQzsBX5hp8tfjNc6FMdi4+5OCmdL+rsAYb
SWrOpYnwoTsZfE6hIjV4wKTCae0AHxpQe2Al+q0KT1jqiX85yIfi/CoykuKq
8JzNWJHVYT5UjMSOiftWYRYXCtsPFT50c8EhssKkCktF6gSkqPKhsfV6R3g5
q7BJ41CC7iU+lDuf/t+Lq5W44wR7XeYdPvRi0OVoXVcF/imlvuVmAh/aMTC6
9VheKTaKWBBbEOVHjzbkvoy5mo+1ayXHDPz50dPAfNe45g94P8/zY3yB/Ejc
+zTbphsfsOD5npDvQfxI8V9LVvtCEm6seXdseyg/0jATQSqbk/DFms2h02/4
kcUPNrkcy0SsXv3f8Rcf+VHngr6TokAcVqnkDPtQxo9mgkrF1C3D8WaOW+P6
FfxItJ6qdDQhDC+fqTzOU8mPQt9sqZXpCcV5NM9x2xp+lFuckz5sEIKVaSwn
jjTxo7jDSZwnzILw3oq18dpufsRlypqZfdQbbyv7c+LvMj8aT9bbGPzUAjfk
fFWqWuVHp3VD+/yHjfDTj493xJIEkOm9K74fv2jjdv91vBfXC6Au2V9xjnYs
OFBfoO0jpwBi30lSu3DFHFan9tqYigigCPFdYxNxLtAiahvVcEAALa/jNDhf
FQA+96b+ptkKoMpYi7Ksjhg4M98Rc9NOAHmG2I4sb44FVuea8xIOAqju+eI2
oeux8NQzOcnvoQByMFIz+NoWC3Zvza7deUp83ybCoboxDq7VtHzf5SuABq1F
9JwKEmD3jqLAxA8C6GjWFSNXmw9Q3RWgENVFHL8mZ5wqmwbPdanKZ3sEkONb
bQ7302lwqGEELfYKoBm9ZJmzxmnw/vsJTZ1BAZT/L/FjRHAauCbO3hOcEECh
FzlPnl9MA2Vr3UyfJQHEJWp+mrk4HeLmJZScNwgibtOH2TeOZ4KezTmV3cKC
KPAd/VGRbiZQhh+e+rVRELUf3P6V9V4mPGlr0D64WRD1nIi4c+ltJugUvHgw
KymIuFZnM/4uZgLP86Gc23sE0ct9jRLnPmXBI560wwYagujIxmtlrCzZsHbw
WPee84JISNfJ9LFoNrwwb3BnuSiI2H2Sdv3Ykw2++X/pKZcE0Z1II5KKQTbE
Wh28uaQniBx0t/I1f8mGqrLi4DBLQaQiy/tQwOgrbHJpHm9wF0T3+bfw3HiX
AzHJFkGJnoLIWCDp7fPMHJD+Ma/8yEsQXQrjeviiLAcUZEVebPEVRCsJ9RV7
x3JA9ZeBiM1rQfSvw+skUvoGdw4MneKOF0SOZ7ds5C/9Bnhy8e3pIkGUtRoc
JV+TC5c/Za8tFQsiJbaYlLRfuTBkbWuYViKImPbdFhEeyQXKyLDYxgpBpFgm
OhDOmgcmfS1vRmoF0cGmBYmbKnnA2pod+apdEPG8/Gkj/SEPIkJtl451CKKL
XV0fyNl5IK8tpz/XKYjCN/DH1RfngU5jgohhryAaaylI42vPg+Sa4HCFEUF0
niNV+Sp3Ppwvtg1tnBdE2ekK8kNW+dDzVG7e4x/hv8N7tzrkwwMY0T6yJIgq
ysYsjz3Lh3f5xhsSVgVRghSbpnxoPsxkX3ztwCKEjEY2ba0oyoeQj3JBGwWE
0J+2a0yDfAWw02pkpkZQCB0TzfC0ES0AvD1Ry3WDEJpKSKzokCqAoYTN/KMb
hdCna9e1LQ8UwKF3XAH5EkLEI27D0H79AvgdPOJrKCeEhnt+bX//pgBSCuc/
nVIQQk2Cl7YYJRbAo7H1dbJ7hRAOWAyf+1QAwifFeZf3C6Hg3JrRPFwAWn8u
+YUdFUIuBXzK7zsLQELc+LMLCKFQ7oKrZwcLYFL9Tp3FMSE0dv5LbvVEAfjE
evLuVxVC+ZceyN1YKYByzQI/uoYQUudO510UpkKIc+XnnPNC6JbKZW8PcSqY
ffhZ9/aiELL9eV1oZhsVmJlmeO9cFkLJ60OPGOylwpE0aX+Oa0JI+4ypUuAZ
KnC070ubvi6E7P8KP2e7QIVWtmP1LYZC6O5Zq3Tdy1RwMNSnvDcVQsIRQ9HB
BlRI5/H3P3FLCP0X813Z7B4Vnh56k7bzthDq+dfFVWhPhfMWyfV8d4WQn8n6
6IWHVBgrKKF02Qoh/0n3wbVnVMgdpiuU2wmhjJ/nwmrdqPBSqPPiJwchFHVj
ZO7hSypI3/7n7/RICMV0dH+28KfC3zDWdFMnIbS++NO6pCAqfC8RoKs/EUJX
tfYvlIZQwWiTHN9GVyG00734a2gUFeTVDu8hvRBCrUdOOZ99S4XV+2qag25C
aE+jc8uvGCpEVpkEfHkphKx7bE8FJlLBav5uepQ3EQ/6djkniQrKks7056+I
+bhUOpmbTAW2C17TVn5C6LX5Z6GIFCr8eBTKpxUghIoupZdc+USF+MT4PQeD
hNBLP+ml8c9UuN+QrinxWgiVbvX5apJOheOr1HtsocT5Mp4uZGZQgbKzOmAi
TAhlupbkd2dSoeNKa3pzBGHHg+vGsqiQ+myAnh9FzJdob2XDFyo4pf6ZjosW
Qi3hA/wh2VRQbyXxe78TQkHlXm37v1JhIwvPXttYop63Km/JIDykIKqlG0/M
R73jAEcOFbKvbbdFiULoccLCDkTYzXN/oEySELLZ7DaqSfh/jWh5bQ==
"]],
LineBox[CompressedData["
1:eJwd23k8VF8bAPCxzSDM2KMkESX8JJTIcxSFJImyFKVNJSRZWiRbZcuaNUUI
Sfasc21hxjpIlKRF2bJvWd877199vp/unTnPc55z7j3zlJSdk+klVgKBIMFO
IDD/nFIyKBHLvK9dKeE/eqKEiqUS3sSrq1nDXFt25SHcAmHu+suq1+FwcbSq
GO7htubkt1dc4av1O+OO91SM9unsi6+qd4F6zIbLCXeXk3srkeUh5PCunJso
pmJ1M9CSdMUP7AmfTE7iLnTnbFZvfQSfzVU644vw71tup7eqBsG/Ub3vHwqp
WNSDONrlhFAwVtK+1VVAxWpYdl9cJ4SDx4Smd30+FSs7FH3haGEEvNIyW0vI
o2L5/v/sYq5EQY9i2A+zXCqW1XDW7qf4M1jLHds6lUPFUrhqzv/XGgPKJ6yy
nd9SsYiQwHMNqgkw+2rUWSyLigW2jdsKDiWC0p7cwIMZVMyH/6StbUIS5HE0
5BunU7FSOu+7ZUIypLTH/CSnULGiUSwn+XMy0C761dW9oGJ5PC45RwpToKRW
7uKZ51Qs07j7beSVVNBkM/PbE0vF0pwev9XQSQMXvWddLtFULDls/9tv4ukg
Y8ziGxVBxeI6krJ3tb6GVm9yqFcwFXty6sqbWtU3ENxyedeIFxXzcxd7c5Uv
G5Rcyw9q3KVi3rFNWeShbPCP/lZ71Z2KeXz+L8s6IQfyh1ZcHZ2omOp/97r+
EfIg6G6NE6sNnh8w72q+kQeFdSfLLCypmLKJUteLz3nQcfmk2lMzKqZwc6BT
rzAfJq+jDYmGVEymQLcz/Eoh+I2sSSqr4fmrlei82FUIrC86+n3+o2Jbu+Y7
9uoUgXVgv3HhTiq2eS6j46t4MbD92+6YL0HFhPbyduxsfQ82SR6JwuxUjL38
Y3u1ajlEVR0sOESvxMQffNlZkVUObTf2HCuvrsT+O/Tdp3hrBex+VH2AVFqJ
WTWNqb7hqYQx7+xS8deVWN4XtrioX1QYTFgd3v6wEqt/wTUdaoXB2kAmRd29
Euu7QD76pB0DCa9j0aI3KjF2t5A1bZsqMJ0z23rMAv/8tdjcPYbVMGjvWeem
UIntH9j0Vdm/GooilB2IUpWYbk0Sl1JVNZw+37v5ojD+/QGpdjvUa0Bm8WTX
o9UKLIAvV0hiWy3w3W+futBUgfVtafAgLtXB5M+L3hxnK7A/BMM0NrUPwMgq
JGsbV2DTP5oZBOcP0MJDJh2ACoz0ukN+efADaAqkSQZvrcBU/uvvm2DUg4Oz
/MVzA+XYE5hDvZmNcHdHpso1s3IsSsrjRvevRjB5HcVG1ynHktiW4zolaXBk
LCn/j1I5VthAmGmJpoGs5lFPK85ybOA4T1rNQzosjOUZ8JWUYernpLmyLZvh
1eQ7H1XuMkwxdfFOVVgz5HYUnCmdLcVkhlrGuhqaITFWmH21vxQTdPZoX1Vr
AYddyiQsvxSbfNASc1ygFfYMrUhvO12KZb1wl52ht8FUoKoRd2QJ1n5TtpmN
pR1Odf5YMvQswZoF+TlCN7fDAFFlu65tCVZ3+rdbysl24G7zeWIjX4Llfwuz
aqpuhyGZ70i+8j32dGJQSiKJAQYvLj7u7SrGAsPbrV6XMiA4tO3SveJiLGBP
eeTujwz41rYu2RlTjHm5h3Ec5umAztOa5gmWxZjD+v5hxzsdwPNY0C+8twgz
IIflVp3qhMBuwyOz9EKM7b/9cJH8Ec5zhNoq3srH4gnsChflPwKN0fh28Gg+
ptLRsvGi3kd46H9j4KRMPnbu9vnpC3c/QglbRpJpVx5WUf447cIf/HqVkI/9
ynmYq/6nDRewbgh0jMhuLnmH/T7v2nPeqQe0r77tqFnLxBqjcm7atn2BbRjb
hay98ZheZK1q5tgX0A2seWRhEIfVhPcsTHP1wchDFpqyVSxWEcrqFaDbBymF
g/ccPJ9huY9PBb4t7YOSbdeOXs+JwGLvraUsv/oKVi+zSj+M+GNXLhp3xXh8
g8t9hfuD6m8Bm7j7pqGw77D1sdNKwt8UuMp5oDNq+ReIc2Zo1aSVwLNinZsX
uQdB3MRQwfFXCdRcPExWFRsEu+BZ56ltpbC5+vjRTvVBSOA/cvXui1Jo9bSr
5XcZhK/m7fpBz8pAZfRRQejQIOz+RXDhu1cBSy0dkY8//obGspJqZUoVyN77
tNvi128Y689QvKBQBSfl+9rkZn7Da+q+l+76VZAdMLihgfIHsi3D7+h5V4EN
LPpyGP2Bjfut0I3xKqjNlXD1qfkDV1uWeXPrqiE40t7s3rsh8HqZVq1wuhYC
es80E6lDwGFtuj/bsRa8JU/ohjcPwYGL2u3EgFq4/UZDNX14CEw/GzkZFdaC
TS23ULv0MASzImNBch0oz2R3SscOA9dvLmvbyjqQ10g+mpM+DIZ2exPdOupA
5kF07b6iYUjPIkZc+lMHYhu8Co51DMNGz72tNMoHYJU+HunOMwLqdo2E9PMf
oMt0yrTJewQkzXea+Cx/gNbYQbr50xFwTDrzbJW3Hhr7ew8OPB+B3/8ePz62
tR4qr9WozJWNgFCTU8U13XpI94kUkJwbgUO3cgKjA+vBI1+tw+XqKHxV4j37
iK8BXBZ3Gq66j8LiQoGYxpYGcNDeUvMoYBTkm7sGKhQb4DydmJ/4ahT0vk/P
ahg1gOGPT+H1X0fh2iZWceKjBpAQuHNC3HQM6s6Hz9bPNEDEZE18lu0YHH9Z
dDxnvQE42zb82n9jDAJOJn64vqERpoOeu1k/HoNP4gKJ9tsaoZGjOiGROgZ3
732EK8aNoP2La1CheQwksj6VrVg0QkGNqVJl7xgEet4NvXKhEZIe/Kr6OjsG
a6nGgxXujXDrH+n3ll1/4UxB2diFpEYY+mTy37t9f8GLOvgh+XUj2BTHecDh
v1BeaGZUmNsI+rd2bTh3/i+oKSgJnK5phC1/jZWTY/6CU0C0Y/jPRohqivHc
nfYX9EibE11GG4Era6CmOv8vvHze8kNuphFmL7uY/2j5C7Edrz34WGlAG4i+
I80+DvoBdA66BA20sf7aAv5xqOlK1TCUoUHhczleXclxaB8z4E6Sp0GSVemL
i/vHYclj0LBKnQZCGqzDs0fGIVH58MtQLRo8ET2q4m8+Dsrhh88qH6SBa1df
XZrzONA1ZL/+NaLBSP52PnWvcSAOeDzmMqWBbbjj6fqgcfDZZ+qweIoGhsaE
kd/p46A6mpd//BwNMAWDPe6F+N8/KyWUXKSB6oaIe6SacUjtMbSZsaeBZKM0
ecfXcej+qyv905kGUekOFiUj4xCmq+MZ40oDbv+iZP3FcSh2GS/f4kGDBxfW
Rno4JsCuN/inx10azOocUb0qOAHNb7GhNC8aXNsadv/f1gkwEgqpS3tIg29r
PfVPlCbAe6+Ns4cfDejl1yyzDCZgcu2F5LMnNEDxBSn7T0+A16cO0e9BNCjy
WBmlX5yA1qUQ2loIDeRP66lZu0zAuV/yyhNPafBSLdRr9MEEXH58+Uh+OA2E
hT413A2ZgN3nzm/Qj6RB4LQkP0/CBFR5vvDIjaIBgWFvlZgxASwPOYNH8efW
7Xd5rxSKJ2C9+c/Bf89oYCOzted73QRsuffIdSSGBofjQnliOidASiHKMD2W
Bkp8q8joxwSo6+2oVYijgYjv9dssUxNgJjXUdx/3+kJvZvH6BAiKsMbE4XZV
l5lQI03CeJboU6aHnK2fhPFNQv7Zakemz7yJkB4VnoTJgYx9TLcP0ir1JCZB
13V8LBa37lYWi5cyk9B4CgtiusRq3/TSrklIazIXZloh2inYfM8k6Ij+exKD
+2Vbumzu/kmY9VkdfoZbiLu/ivvgJGjZ1Kkx/VhX2PqSwSScJFTciMa96mU0
h5lMwtkm24go3C6lvk/FLSbhheK+1Ejcv2fKdt62nQTX1M+vInC32u+0kXec
hDc7hJ3CcB98dW7R7/YkbE4Q03qKu/hrTMS3e5MgOVv1LwR3kimxISpoEqxc
zxsG4RYIOXB+ImIShDcof3uCO6DBddkgfhK2OhvZP8btpPXzv/WMSbB/nmXt
jxvJVsVerZ8EDnLAHy/checWVOpaJqHAcVKbme8dCUotWz5OwsW3nlF3cVMo
z1m6fk6CWU8reOD2M+xKUBqdhJEr72LdcC/6bVB/Mj0J8Yo9c664v//zvKbN
MgVialW1N3GfUs1jj+OcAvpJwj5n3HTHoaQZ8hSsuQa+d8Sd//NUZ8aWKXB7
JjRwHbfsltAbbLL49Z2sIddwx1t8INkoToFXsuixq7j5IleSS1SngJrosM0e
t0/LHi1BrSm4rreTfAX3POl6941DU5DA7it8Gfe1gynOjYZTIK5VufcS7v57
vdzSplPQe2Knx0XcJ99T0u5bTkFguWzvBdyNU0eg59wUoA3SZ5nWUnjQq2I/
BWGrcUSmcy8X3wpxmoIif+EeO9wyyX95h9ymIPOLYhfTsV9kMg56TcFM4JNV
pnlEzhx87j8Fu72/nmLe720S2bcQPAWSon9/MD0bSHczjZqCCvnAVOZ47D+w
8L9NmILY7dFJzPH2re97Q3o1BZ95VzuZ8Zjsd9azy5qC8TjsCDP+D66vv1Xk
TcGK1vAKMz9uy4/t4kvw6+ObOpj53OFzbdAdm4LJ9LnfN3B/5jSyN6+fAkd3
Di3mfAQ/VRxVaZmC/IDULhfc2iJkR0rXFGjXPCq4jXsicXLy72c8f7FOX5jz
/1K641bT9ylQZt1x/B5u06yC+YyhKeiOeszvjZt9d7RnwAQ+v6Gu2/2Y9fve
beXC/BSM/fgcwqxHe22LBzqrU6BytPgYs57FPmiwSrJPQ+FJXnvmeqAf3eS/
wj0NTdenvzHX372OFdJn/mlImvMteY574BvGGy05DWcWzsdm4Y64nBzmIjsN
Xu5y6XnM9f3XR9BEcRrY44KkSnG/XtIT26A5DWW7MxxpuC0eyiUO6UwDX7Xm
kQ7c3JxckvX60xCsJ5PwBbejcLPMw1PTIPNuT+0E7q2Jb1/bnJ2Gl7/jkpZw
d2x7Kq91cRq0+jrZiPE0UFM2VV64OQ2h4q13tuD+XbynoMtjGqy0VaN24Y49
IKye/2AauldKD2vgXjHs0bwRMg1DresBp3DnMEqphlH4/RWtmy/jPmeRoLMj
YRrubfti7Ya79pLNkZ8Z07DV8ezvWNyuY0Cveodf33xs/xvcsrekjiUVT8Pv
amd9Ku5A71+mlnXTQI/4nPobtxap/qN60zQYn+BeWcY9HvLaQqhjGhoTtCUF
EmhwIuGaTdu3aSj5KNWHcG8snryqtzwNjnbTBRm46VodY9tYZ8A4nG2iDve9
2gInAtcMJH26vvkH7m/tbrfLRWZg9rSvnWQiDcJOWyzGSswAHTz9AffBfo27
bjIzcLnj5LtzuNNHV7x3q8xAqMZfhXTcFi79bGSNGXCUdQyi4+b6hwWMwQyw
77IgTuJ2IPoGvz42A/PZcVe0n9NgjxRXrMTVGXBhlLoN426+9eNRj9MM+Kk2
Oogk0eBifbl7pNsMcL42fqmL+9l1x9NcfjNguimxOxX3YlGnyFzSDGzzSJS+
/QIfL+dbYm7aDExvt8vIxr3TOmD+WvYM/GKfihvEbUXQ6B4onQHDZoM+65c0
qDBMim7umoFYh/dPrZJpYPbc3f/Rlxlg3SCtkIT774TJ7YM/ZqCKpdP+J+4t
0WzmJRN4/vy4+l1SaPDwm71QKvcs1DRzeqa/ooG4ykF2W/5ZOFV5smcBd77f
plmxjbNgqcAgH02lwa+drZ1Pt8+CwddKmQXch133RN5Fs7D3kFDJ5XR8P6vn
8VU/MgvFzTJZDbjdxX67TB2bBftIsTz51zTIoMaaXrGehUPJ/hILuDdwrfGf
dJuFBWLLyaxMGqRaf2Lhuz8LfIKf2jZn4fWSkzvV6DsLx6wiU8JxO568wNAO
nwXljBRHnzf48/R5Y5h89ixMS3rHPHyLr+fJZO/B/Fkwr/pDJeXQgOXQXeeX
pbOw9a+RXxhulSFFE5GGWfAyvcGX9Q5//1GJJLP+mIU7ax/l1/JoYNlwNrRX
dA7+iC3t2vMef/4O0mZkJecgTs/tyALuNVZ1S1fZOXjhwKKOldAgRZtPhqw2
Bxt6tOusyvD3tSJqqa7pHMjwv1SrqcTnp1NeMsJyDuJzPnmkU2kQOvXM79u5
OfDdx832FMPHo+h0/I7THHBMHd95o5oGd1IlB98Fz8GsFt9N2w80MKoJMlyN