-
Notifications
You must be signed in to change notification settings - Fork 4
/
SOC_2.nb
6040 lines (6026 loc) · 347 KB
/
SOC_2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 354782, 6031]
NotebookOptionsPosition[ 354277, 6009]
NotebookOutlinePosition[ 354632, 6025]
CellTagsIndexPosition[ 354589, 6022]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "\[Pi]"}], "-",
RowBox[{"2", "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"H", "[",
RowBox[{
"t1_", ",", "t2_", ",", "t3_", ",", "t4_", ",", "k1_", ",", "k2_"}], "]"}],
":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t3"}], ",",
"t2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",", "0", ",",
"0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t3"}], ",",
"0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t4"}],
",", "t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}], ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t4"}],
",", "t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ",
"t4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "t2", ",", "0", ",", "t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t4"}],
",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
"t1", ",", "0"}], "}"}]}], "}"}]}], "\[IndentingNewLine]",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "1.0"}], ",",
RowBox[{"t2", "=", "2.0"}], ",",
RowBox[{"t3", "=", "0.3"}], ",",
RowBox[{"t4", "=", "0.3"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",", "t3", ",", "t4", ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}]}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.657617081527021*^9, 3.657617108194943*^9}, {
3.657617152797092*^9, 3.657617153418762*^9}, {3.657617576491713*^9,
3.6576175946724052`*^9}, {3.65761772047736*^9, 3.657617722002494*^9}, {
3.657618837071484*^9, 3.6576188388302917`*^9}, {3.657618999937903*^9,
3.657619037679682*^9}, {3.657619348464987*^9, 3.6576193503870287`*^9}, {
3.657627245310896*^9, 3.657627368522787*^9}, {3.657627494956646*^9,
3.6576274987088737`*^9}, {3.661808174807149*^9, 3.661808178196727*^9}, {
3.6618082391013803`*^9, 3.6618082426663237`*^9}, {3.661808460542288*^9,
3.6618084941412477`*^9}, {3.661809177207789*^9, 3.661809206438279*^9},
3.661813607607493*^9, {3.662553813232932*^9, 3.6625538134603033`*^9}, {
3.662553846128076*^9, 3.6625538756324387`*^9}, {3.6627038949392023`*^9,
3.662703895365621*^9}, {3.662703983885495*^9, 3.662704020662745*^9}, {
3.6627135174004908`*^9, 3.662713519798492*^9}, {3.6627138222758102`*^9,
3.6627138246028633`*^9}, {3.662719051019256*^9, 3.662719072066627*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd2nk8lM8fAPB1Pcvu2mfXpiSkkiQpFfGtzCCUFEpJKfeRXEmlqIjIWTk6
KSHkSLlC0ogo5SjlipIzcqwjcu5v+vmD1/v17DM783k+MzsfOyts3Pfb81Mo
lOf417+/8ZdsCBU7H81B3r8fEj04Mvifmaw5ePn0Hd8/t+wN9ZSVPQHq/LdQ
57A3ba1LojV7gsamnawp7HP65kwh2fNAfnpWiotdYtblzXO8DLqXHFvfh82X
VzA613QF/DJy0WrDliuZlZ+ZvQrqU5TN67D1KqDF1PIQwKOneyFsp49Xb07o
hIObh3uis7HDvlRXjjpeB3ZGvwrisM2GqZemdG+ClfEv24P/vd4zXWKyKQqo
NzsJn8I+P2mYO3EiBjT4zagdxg69MLJ3fDYWjFF8T+zAzrqyJYC7/C4IRX6t
fNilRJP0yPN7YMZu+dKfCySqDz1fOKQTB2rSu4+WYo9FlQ4NOD4E57irhj2x
r4RtrJjwTQBtSWiHAXZojT97QvcRKLJ8f3M5dpyJXOZYUyIwtHPTr5gnUXL0
menRhCQQmL3lSTR21tdKvdETyWCF8EvSGrvU/MTPkdnHIGjc/vefORL9tH66
eGj5ExB4bOYHFXsgiWc7+OsJ0DX3c66axf3pMX7++3k6cN19byYQW9B5fM+A
TiaIPSykNDNDInlPdf8+x2xwIMmg6eM0iSRadzqelngG+g3nbvpiS/kMiY77
PgPqB40PKGLLvdI8Oqb7HJyQ8B64/JdEalo//3CbckBWxWp3zhSJ/usMifPY
nguOHNaxzZ0kkWbAJh1uQi5Q0zG0NMHWfxtwY+REHnjC++oe/IdEh3fLrxue
zQf+QX+mvo2TyMfkpNXv5UXAdVl1vTyXRAsBakt/hBeB4uumYXEjJPIr4Pv8
eboIrF2tN01iBy67o1PcUAw29NzkjgyRKLKnQj4kuAR4Lzt/MOY3iRLOywzJ
j7wGy22Wabv3kojdOLFfVBmBadVCc9RDov3uRzYE2yEwpyilSGJ/fbT614VP
CIRzX00+7iJRK1FibpNRBtinjQwKO0jUVf9ru4plOTDTZ6h5tOJ4OO9bmhFb
DkYFd9LiW0jkIJD3R+5jOcjx+xVf1UyiX6qXn0poVIDfJXuFFjeRaPCeuCyF
8xawpDN+3m4g0aSdtkBdZSWocRjbsfEjiUSm7793Ua4G3/p5Ki9ekkg9uOWC
gXU1+Elzyc8uxvkrvkRJIaYa+DKZJilFJKpUiYrsmq4G6zOnPke8wPFwvnbg
yNsP4EV5LqmXSyJKm1e7vkUN6FWO7zyajuP7I8WbrVsPxiIs62VvkygqRdfE
7zj2M6pjeyyJ0l27146cqwcHGb1r7sTg8c+u+PYxvR4MvKtSFI7C/ZGI33GN
9QmYPejT+xyO+28czc/79gnoA1ln8gqJTr25HD7o2QAiA1SkN50k0V92TNa3
sAZgru5RVnKCRJes02qrkxvAvhqtF7pOJAqnfGI9aWwAHUWn7+23J1Ga5spY
+/++gB3DKw4ctiRRR3FF/He+r+CMj6rKogMkMs4Vya6/0Qgcg0SG92uQSDk5
+lPe0xZQlGL1ZykfiRbd2TiF3reAwB+2bYt5TDQbViNV090CZOiyVLF5Jnp3
murUI9kKRNPuKQlMM5GNjs+CeHAr0C9511LPZaLYTpt15yy/gbvsmc+SHUw0
J7vpqgarHbhntW71fMVEPfucpH6odwBiYJ7mc5qJbksGST+y6gJ8r2PLln8T
RRqehdkCH3tB7O0J/sfyoqi86b6x+5oBgO5fYAi6MVCMzcGJP5sHgO7R+QXj
kwzkMMS84wsHgM+Pa6wHTgxEE7jyI8R8ACitm7yjbstAxspObslhAyDq519v
98MM9D1wS3jLyAC4nBGp16vNQDMqNVU6hb9B+aRrBSHBQB9Lgk5WV/wGSpHV
iUfFGeiBPiRNPv0G7RTHrmdiDKR1LPfQ8YHf4JHTSLSFKANdu3a3x1tqEJxL
3D1cyM9Ai3/YCzz1GwT0K/zOwUN0pBK+oCmxewg8XzuaEFpOR5tOzNllHRoC
/0VqvX6B6GiL3kyott0QcHQvTux5RUdqlMlGl8tDYMuznRU6hXS03WvIrSx/
CLxou/daJIuOdlm0PXBeOQyK+N2I17foyECjtYK3YRgY7xR+Ox1NR3sWNw/E
7BgGFUsMzqjepKN99Q1qrw8Pg/NRHfnZYXRkuvNDLef6MNgvzhR65kdHVkrF
CyWzw8C9qFO/05mObEQK5faLjAB+Zpjreic6su3NN+hbPAISZ2Sen7enI4eE
57fYm0bAmiFqvLgVHbkseqLs4DQCTho8MT16kI7cRlNMZ8+MAOmxiwXZ++nI
vTb5wo2AEeBYI28oZExHntcSKosfjICFTS3SeQZ0dNr+waBR5gj4aLHfUnQX
HXlpx4n1FI2Au78u/XDUpaNzc7ePk1/x/WRliiykI++W2MDkzhHwtEN//NIO
OrpQEJ2uwR0BZ933hHz/j458om/W186PAKan/0mgTkeahfqzz4W4QJJ9Vf/z
Vjp6naIX6cvgArfI709qsWGs7gp9DheUWBQdfoeNAnbmsSW54HuKhOlrbC1P
Hf02WS7wHKPE5WK/sdJuTVnDBR+Xe298jK1tpOV6SpkLFjtfZcdgl++AlO2q
XGDgqAL8sHcqgWhiOxccEg4qOoH9VlJT/pM2FzDuRvoZY+uJ7Ci6v5sLtJBZ
zBbsyqlthg7GXNBxeWRCHFu/978fG824QFTVPnFCDce/4ctg8DEumFj1Z3ED
diBym/luywWfH+9RycYuu5coHuHBBUIa4WZW2B3B21d1n+WCuPd3bFWxF7wa
N267iO///UxcGHubEc2wP4QLjDVNXVJU6ejI9mRzeIMLIjfQ2J7Y3ms1HW/f
4gJ51RUW27DzBTyv6CZxgcbxhp7KLXS0obCl8FEJFzhAheqyzTjfHp+u/PuG
C/Y+f518AdslSvSL0Xsc364YeRXsJy5aI/NfuaD21gXZ25voaNWKJ6uPjHDB
5NNZrp4KjidTZ/PzP1zQZq0tMrQR5+dsGxSe44JVf3re38CO/8qyKBAeBcJL
+3Z+2kBHS0K9o8RWjgKuXYC8mjKeP+fEEk4ojAKi/WjQ+/U43+0ys5DyKOBf
OX79CPZNzY53bttGQd6flY/OKNERfVyfV206CmiDcmXXFelIseMnY+XRUXDm
XogXC3tXjY/keetRsEV7f0PkWjq6mpqtusYN379mMjpQgY54R5e4BASPgikr
MQVTeTqS2f38fGvEKGi8tnTHm9V4/qrtCVaJGQWbE1x567HPsy4n/kgYBTuP
CEUsrKKj8Yre5m3Fo+C1oktDwAo66ltfoDsxOAqWvHMyXC5FRysvutqvGx8F
n/5GT55cRkcWH+Wu2kzj+4+lniiQpKN65+iKeqExILmzLGPnUjoqTvXQyZIZ
A8XN0Wl6i+kofMU6LQfjMWC29UFtB4nzy6PTKv7QGGCs1FGmYVPQXb8vFmNA
/dZGCxUmHZ05Loy0T4yBRerWcucZdHT8fo/m8itjoPN6ocewMF7PxBO2N+eO
gQyfdBMPPvx87cwsyOIxcLg4suIshY5Scpm+emgMDLatZvjwaEhy/8WXeR/H
QOFtpWUX52lI8PqR/272jAG7b4t1HadpqFFYXN1gyTgYHKna8IVLQz5zIZtL
LowDGN//lfOdhmq9bGMu+I8D5jQvvbiNhmSHtv9RvzYOTN2thCy/0VBF+0hB
fuw4iJ0eN0xopiHG64P/ZT8bBz3AfbtQAw098F+hldg7DpIbTxmYV9FQGVG0
79r+CXAWWPdveEpDiy5HZeuZT4DfEXl/rmXSkMPUSZaQ1QS4cUk58Uc6DdF+
yXz2d50AhJLTj6upNLT/feBBn2sTwGC5BFGQQEPdYcYWbqUTIEqwqutxFA1R
2b9OmCr+AYZLHLQ+eNHQZLCF7sONf8B3zqqkWU8a6l2olx1Q+wNSpp3Ziqdo
qHKwqOmyzh9Qa3J1ib8rDQW9C9PNsPgDgvof9yxxoCHCb8MK/ut/gM63Da79
h7BHzjZnj/8B+w3EEldtpSGhGiF9+qtJ8DLv0F21MRHEcI2zbS+fBIc6bqu9
GRFBi0Q3+2VXT4LVEgNde4ZEkNxeq6IDzZOg1dr4rPkvEbSzpnhd3Pgk4Byu
yT72XQRdqXFnrVecAqlavsqMahFEqW1p2Xd7CrDt6H1kggiarc1yiTr1FwhK
X7Pdoi+CesyeLpWRmQEPlCQcikKFkdY1N9d3WbMAvVVsHfxKRZI5P8wi82bB
Qzt796HPVDTxzVjb9OUs6OwXWz9SR0UpGzYv6Xg3C9JNe3Qm31MRo2kKTXXN
gqXJTp85pVTUuNp/0RrJOdBq5mMQk0JFJ8ujX14NmgPFmhLnhrypaOeQYMqe
iDmQ0j/KWX2WimSWnL3BjpkDm6Z+k5anqXh+HLaPfzQHVlY5mLS6UpGamDSZ
XzIHlDb+3jxiQ0UU6xSb7rE5kP1cMzBuLxXFLhSK6FjOA5qaX4L5atyfNW/d
Yu3nwbe8x/lSq6go0OhTQ9/JeaDws3d9lywVeSb0x4d7z4Nr6XmeF6SoaJ+2
5KbGm/OgPmerbwOHioggnyMnKuaBl4qPtIYAFV18Gvz6ZfU8SHhSdHErH45H
Y7Qc89M8cDulydXgEahzTeZwTvs8WPEmQn3PLIFev2+7Mjc5D4ZqMyMSxgnk
LaqZcX3tAuC+6OCX7SHQiKoBq3PDAtij5lZi10Ugh+OHzmxRWwBaB4I0nv4k
kGm2G2jRXgAywnzpRt8JpGLysGGlxQIYlU+LrmkiUNr5DPUzNgvg1bjuXY1G
AskmvoivcloAR99nFaZ/IRBzvM7R5cwCaAon3OM+EWgghjKXH7kANGpOt5d+
IJD1K4a1cOwCiI01/2paTaDmHonKI/cXAJNzX4P7jkCVaio3eKkLYFKL331r
JYESm63ldpctAJuA8QfCZQRayucWcr9qAUR7tdI/vCbQjbUXhodqFkAwATdF
lxLo0oWowqjWBZC2f3H9lhICHZUqN2wbXwDr+pfsLn2B++M6OpY/swDMDkcu
v1uA4/N6+d3rfDxQLB7G55NPoFs2vj3aJA/kOSuzTXMJtDovPUxqMQ8Ape/7
9+QQKE+oRWVSigeUhle92/2cQJ/TVC89UeSBFGXF0xbZeHwztnIBKjyg+2Hr
S4+nBOLuiaq2UOeB93Knj4Zn4fiMDC9m6fFAxQ7fypYMAhmopmWfteYB7nOz
NbVpBGoJajxo7MQDnevGxWSwnZoF59a680BiqEHMmVQCBflY72r35YHAnOlT
21IIJF5zfbgggAdmNgS3PnlMoGSZ0pgboTxwTOG/0eXYb8okf+rc4YEXxyw1
VyUTyISzO1j6IQ9EvX196VkSgTrszq2feswDny/I+utiuxc8bqjP5AEW7+Xu
zkQCLVC/nE/P5YE0Zb+2IOwIc37ZwGIeWPNYdMdmbKmMjZXHynjAff0Lt75H
BMqYO+6y9R0PwB3+XknY/+2LEGPX8UCp7woTR+z3D18WDnzlgW7zBWIz9uHR
/uMVbTxgnKZ8h8Du1ZYQetDFA8y954nOBAKdidHLODfAA+unTA+8xRbs9TIx
GeWByO6+y8+wo7YmTSn+5YEbudSIJOwVIZ/iBXk8oKel4fMA+/AQb8UIPwWe
i3lm8AhbdvGSP0cJCjz11Xg2A7tPU/ndOxEKvLY/M7wU+6mj7n1VUQr0uSm4
0Ix99oaFWyKLAi+6GuybxdYsOq1FLqJAUW0Z39W4v0KdoYt8l1Cgxcr6q2bY
H2mJfb8ksaWtTtzEjtlcVHxQhgI3RF6Sa8C2sKiPeLOCAke9w/OkcPxWXe2z
2rCaApvH7y92wx7IWtgcp0CBq+I89KuwcxrFqSJKFGi4xE9HAT+fCzyl1jMb
KND/4RhxE1tLYWdW5yYKnLmfFMGHn2/9ec8DJRoUeNUo5/M09p3EEPm1O/D9
mYbB/jgfLD8kTMdCCmTqJfxm4fwZlqp76K6PnV6WqYfzq0C317PNgAKPP7ky
P4h90W1ed/c+3F+pnp57OB8ZaN3gyoMUKBLoYSOajtefuybvLh+mwNvZGjq1
2C9On0tuO0qBLtX/HbmF89tmTbnFLRsK9Ms2Et2O8/9F5JEaEQ8KbMn+ktH2
jEDhTn5PHE5T4FzFcrtGPJ9stFOulp+lwM1pCewmPN8Yk6M7Ll6kwHiFgjVD
efj6sZCn3FAKZLPdVE8WEUh9a3bo3kgKXLZhWeT9YgKJsr86pN+kwJOe0xGf
XxKosEJ2ud0dCrz1ZviwKV4fRJUKrzc9xvFOCh54XI6vz/R6lCIK1LFbPH+2
jkCRXxh7l1Xg18uPXWXg9cv26aa13lW4/bdZc6mf8fy1ufRTpRb3/1O4P/cr
vv5efP/jb7j/lNnAyjZ8/c7OzeGTFFjRMynl85tA9qqJf8yV+KDDLt3WJwwq
Co0UJy9u4IPefRq4vKWip33XFBI28cFjf4cqvrCoaPKu+9FedT64+nOiO1Oc
iq4tbC/z1OWDy+RFszOlqSi9qik87DgfzEFJsWEbqGjYXFTu1Q0+OHrmNF/Y
QSo6d8l7v+wfPlildenm+TQqujoQ3VBbyw/3aK6aLDgpjAwVyTTGPQG4lUUJ
fSsrgiKy1JChtSDslpxJrnojguStFKyz7ARh7o5JIbO3IqhUTJKf6SQIZWmX
H3VXiSDuuXmdOjdB6HxfyG/mowgy1a6oMvEVhGuULBNZTSJIqsmk7tBtQehp
/7O8e0AEZVJcv1vVCMKFvL0nl7NpSDf3+OWyekGoxU508uTQ0Hd7Y9mVXwRh
RES4fbk4DbE+bLbpahWE8up3zSwlacgrdqbH/pcg5P1wHLm0ioa2KV4bchYQ
gtnbP0QcVaWh6gNJc14aQrDXJF/Mz4yGcq52tt7fLgQzltY3uZjT0L0XK4re
ACE4cSEj3+woDTkvSzjD0hOCQ1utX6yxpCGRrrjhjP1CsD3DLP8Z3j/t8rzV
0XlSCHY338m3P0NDb2+EVBg/EIK3QjO4pjdpKPPNu8Rzj4QgSyGznT+ahmIm
qP4PkoVg+vXQiqcxNGR3OGjHYLoQPNLq5ku5g/evsgEFwS+EILOffjHsAQ1p
Z/umldYLQS2jlcIgg4ZQjXu4kgABb8dbvV1cTkNbFkH6bYKAx6m7XydU0FDa
EVYoH42ApT/NtilU0tD1vmfBjSwC9s6eLNjwnoaO841d8ZMhoLy7U4JsHQ3N
bfE6/0WDgHNfrENCWmnIw2fnX80dBGwrL4O/8f63u2zRuSeQgHu7VroatNPQ
h335Xpf0CZju1baCrwPHy2nSXeEgAQX91XqNemhII87bwdeDgHaOR9Q9R/D4
O3f19J4m4LRKe1863n/Lrl1qZ3KOgOpgnPJzlIaEC4qs5S8R8N2Vra66EzTU
XDdjUR9GQBcBltTIXxo6K3DxgFwqAWf8X+u/xfXAwO69nyPTCfhWrXXnF35c
P9yQNpnOImB22MtHHQJ0pCtduq82j4B/N9/yHhWio0Vbebu93+D332YZNi5C
RznO/vBjOwE/LBms82bT0RYbq3fyPwl4kP7WxlyMjgrMgbF/NwGz2qvst3Lo
qGjXvKXabwJutwot/r0I1+/y5y8n/CWgYSI9WlWCjmo6PUq9OFRYyKtL3iuD
69NWI726xVT4Teu6sNByXD99Uq5dK0mFWXXijUXYX9Bg+3dZKuxYxspahuux
1gdO87uUqXDmlIIWwvXaryNW26V3U+HSGx+LwnH957wfVJwzpEK0JDhKEteH
g7tlDD8bUeFhZ/76x9gj6m1Hgw9R4VyCgncericnFx/2GbXF7zc4fSYH15/e
zK0Cho5UuG+Rt+s6XJ9OCy0OS3GmQr3m3KpH2HMTDfeOnqJCUOCTFITrW4EG
o+K3l6iwa+q/sY24Hg6sVtaWvUKFKROh0zHYxBvR6gtXqTCqsN96Epv2/EPL
hnAqvCsmfvA5rq/D09KtQ69ToXPG1R80XH+LJoT0d0dRoQlrb7U1Nuu6/vTd
u1So8kANUXG9HhUk7z8RR4U0DeqHQ9iLLgmJGCVQ4aaAMNUk7CWu5RKCqVR4
yFxy7ZYtuP7dA9Td8qgwR/1akJoqHQ2XnZyPfEGFdkz+Ihfs1+p33mQXU6Hu
ZMGjBGwr+VHDUUSF69wvxPKp0dHGeGkxsQoqtMy0TFDG5ltk0LSpigpHDqy3
NsdO5Euy9qrBz2dBQzAN29O7Tj62ngpjr5j1fsDWGZn9nd9AhcqnJC8NYS9y
UHje2EiFvr5eHxhb6ai7zfTsVAsVWhsfrl2LnX/Af5tEOxUORxUF7cQOqs6i
aHRQIdkdPmGBfUir9a15FxVWtlctOY29ppAIu9BLhQMca24Q9l/lzcb3+6lQ
fpHxpTvY7x5bipcMUiHhEFGWin1XKry1bYQKv4SKFedhO0cXPpwfo8IH8y2O
//6/9B+tx05mkgrXbP5RXYVN92crgmkqbLsr01WD3Ta1Y8RyjgpH78Y++4Sd
6eac58ejwi2x2psbsH17bp1/xC8M94kc6GnVoKO9FuWab4SE4ZeT9jW623H8
d0u9F2AIw5h2rx4ZLRzf1bXtQRLCUNV700y7Aa7/42YSU5cJw3rnTBvjvXT0
SWyN0zsZYXhDjfhaboTjS/EbE1ktDPtTm2qzTHG8vqlQI1SEIX8O/BZxHPc/
KnZjtIEwvBiZds7XE8efZxHw0FcYyrAKngjep6OEUMl+AT9heHNdQciHeJzP
4s37nAKEoVEO0yQ6Ac9npQOSKqHCcHbheejqFDpSOLL7+ZvbwnBRxTIL0+d0
xMhX/dGTIwwtZ/RoLVV4fjoztyn1C8PasoMqJ//QkV3j67HCgyIw36C7WWI/
A2n6X8m3lqXBN4aiY3EUURTlPvqS0UeDz2xSvwimiqJOv8e9D0vpUNVP6lPA
PiY6Wx/vUVFGh5X9C3OfjJmIJntr5lcFHTZdPU5dfoCJNr0OYm76QIffvh3L
yTdjooB5R7WKJjo8Nbpox1crJpK7oBj0i0uH8irpRJsnEzmczl6tsooBO/fm
Z/Jimei3fZHdm2AG3BSqUGfRzESMau3rimEMGHxDNTWglYmUlD8WRUUyYOuT
m5/T2pjIZfI70zaWAT8w+qWHO5hoMEiwSCCJAU9aadnY9WOnGonqljKg9WDc
5YVpJhru78mvmmDAmmeP9TqWkoi5z71jw18GNP1iyK5bRiLlnL+0O7MMuGvd
JWqJNIncLtCtnPhF4a+vXadurCDRME2FJsIShRlvK2VWrSXRyDrf4wbrRKFg
c1X78FYScV3FqDXWorBZG1hKmJLI0qTfbdZOFF5cZPs+6yCJaregxrVOotA+
WvOilhmJMmddU4LcROEN4/5S2yMkcgp5rwt9RKHK9I/oaCsSdST7BebGiMIC
+22ND11IVPdtmO9elSisrYP+9gEk0nz99sS7alFYsbIo7U0gbi8x7tNkjSj0
M9fklwkiUegJg0cHvojCsvxXu+qukUhv6jEU/SkKV8sNsqQiSby/OXbZb0YU
/nbcOHfsDome7v4w57Ceifc7C12XMki07vsz16sbmdDigZ7D/UwSpXne+p60
mQkr16YvLcgiUeJ9a9ShwYShss/Yvdkkih2aCjiix4QxAS7qG/NI5HtTjr7P
kgldrxmOupSQaHo1zdfFhgmNVOi7XV6R6GzxyGCoPRPuO01UnyglkUdXcW3V
SSZspHzTtUQkslU1idLyZkKVil0SWypIZNBycanqTdy/gzFvAz+QqMrVNvRA
DBN+OJjn4/CRRDv5d8+euo0ttMxUrwbHZ92i9qfxTPg4UcaZUkcilYvpCQrp
TBib3LH8+GcSSaxoWiNVzoTJvAMWr5tx//NL7vxXyYTWoZrCAS0kEjNIFDF/
z4T9Etb1O1tJxDjt+ju2jgmrlw7kvvlGIl6FQDbZxoTU336lqd9J1Ou0UU3g
DxOGKR2/s7gb5wc7Vd/+LxPqb9r8/j3232Jp86pZJvwr/LL4Qg+JRETpvmH8
JNx61+H7114SKT3vKeOwSCj9miZzqp9EqkcsGs5wSDi5ZI+B2AAej0BDd9Ni
Emofsd/yHNv4IKLGSZOwO/sz/PWbRKen7+2VW4fvvxigsm0Yxz+RbRmkTMKL
phd1qrED91zz+KVCwo8nqlhmIyS6FX8mOlOdhIemZNpOcElUrGXcskWPhPtO
da33GiMRJVTIXteahHX9oleWTeL+bvY9m2pHwqRlBgpB2GJtY8EiTiRM9Xh2
dRh7lXJHeo0bCePWS9sXTuF8+1zMPehLwvL41Gcbp0lk5KPCX3iZhDmjFrQQ
7MNyaRzJABLmVT1c+gPb+Wys2vcQEnLFlhwOnCFRhKSHr8NtEg7WsIxzZ3F/
y3sj3t0joft/bibT2A9cjj1UfEDCKUs6dccciZ6VGrwZTibh/MEzka+wixzL
GozTSGh4Yd5yBvsNS70nJ4OEYrxtPVvmSfTFZrXwuRwS0o9a0ZKw2+lxS1vy
8euP09MbsXvzxNZtK8LtLZ2aoy6QaIqg7OO9JqHdfYUSW2zKs7OW1uU4HnY7
FCKxhc2HPMorSXhtaKN+AbZkRmt0cA0JZWos43nYng0POrPrSWjelZstwyPR
+1kbleYGEi4Ku4u2YcvKrfGjNJFQUEug/hC2t+HvWoVWElZ4dLe7Y9d7ZUub
tJMQeakMBGErxJ92Od9BQr1bPybuY/u93fryURcJPUV75p9iNw3NilT3khDw
aQj9O7+gvBgdHusn4YXgBtq/8w1BmoGpkkMkfJacxfx3/uG7w65JbS4JXQzL
WP/OR6hdZ+ieHCdhq5UI+9/5icgX9dHRkyRk5PqT/85X9PyI6Xw5TcJe/jWM
f+cvtgubq3TPkZDNmyT+nc8wuMOEBIUFl4V2/P/8xtlMD8d7fCzYlSc3PI+d
iD5HKguwoFpNcfO/9mq/bCl4I8iC+u1Jr4ewZ37daj9EsOD8g5+JP7Dl5/8K
/qayYKPP2Ss12PvZR5Uui7CgSoT98RfYl1a/OsChsyAjLkctHvuJxnKfVAYL
mq+woV/G/rLXP3EbkwVbdM+3WWBTbLre15EsqNk5/0QNW+ms7qgtmwWNLk+e
ZmAfDk2V+CvGgv0Hnf/7jp9f4AMRGL6IBeWNrOczsJ/lnHSUXcyCHoLdJWf+
Pf9vGwp2LcXt+eSozOP82TJys71NkgVNOsX6irGtBCYET0mx4LCxwl0v7MJ1
hQfuLmfBb2uTxr/h/OwGkj7rV7BgX9nKuBBslqlvYtlKFtz2KkxrM7ajLxzt
X82Cpa0HAy7g/I+6kShxaQ0LnitsXC6BXZosCMXWsuC0h1/Rczx/Fte8i/xP
iQU3x8R2N+P5VSltohS2iQWPvfqxbArPzzGV3APLt7AgkfEyyQtbRk/cJ1eV
BfePWK39N5/PuLW8/6bOgi4S9spf/5BI7rW1oxJgwdtdtJWnx/H601AeiSAL
JkV23avH64Vv3+oCU20W9IEHxBSxv5ADghd1WVB2hct8PV5fAqw8E2v2sOBl
4lvV8BCJJhak7gXsxf39tb58GbZDfNVNDSMWdFjmR985iPOnVcr/8X4cr8Qv
AUF4vRMzrbK8aI6f75FDEg14vQwcO2W2+SjOj095fq14PZ28IWXUb8GCOi43
t7bj9bal5pTmQSsWnOi7ffNLJ4kS9KWk1zuyYIZ681woXq/FeisXdTmxoECd
zA+Xdtxe4CnGXWfc/rFktkEbjndZ5aygGwvalVs5TeLPA+Vtp1rbvFjw85qQ
rsVfSfRKufJ2+BUWDDY8u+dcNb5e43FdOxBftw01Zr7H73dyWfDfqzgeAUrp
CVW4/TSPs3YhLGhteNDiBf48M1y57OD2Gzj/X7LfZuLPv1ZxD7HBeBYM6S8f
e/EcrzdzSyP2FLHgxq9vTPbH4P3F+J6Q6WIWvJDZ+/tYFIl+DVy8mlrCgh1N
zmz7G/j+5p8XBRALHtcxoTiE43zIe+L2spIFX+hQL2zC+4NAFw3jdV9YcPxw
6c5JT5xfbYc59BEW9HRvL1Tai9f3hlCyiMuCU3u/PE03IBF/dQndcQyPT/I6
lNtFovEXsoLlf1jQNKlIg6ZDosboXxMX5liws0g85pE6ieL2eDcOiLDhsbWX
zi2sxOvTy9t3q+XYUMUiAp2ZYKJ3pzzyjsqz4UePAE78KBM5KeyuG1zDhjtP
hKaiYSZ6EjsjSK5jQ0+XE7Fzv5hI0eOYxwEVNrRQZd7Xb2eidatX6bftYEN/
zcw+xbdMpHz96cTQITZU+BzwaF0UE9XqBpOXD7Nh4+KMs22RTOQ2Z6nIOsKG
J7xTkkPCmCj7BNtq0zE2JLR8mS2BTLRxp9eHs7ZsOLfthYrhObx/ndZI5Lmz
4e2EOt/Ao0ykavvWiB3ChqdKM4p0VjCRVHLvfxWhbLjb44n8Rmkm4u+hyp8L
x+2F4CmyFL+/g8Fc23U2DJyqCmpj4f2tc11a2i02nNEpk91MYaI7p1r4YDIb
1gl8VF72XRTNXB7KdXvNhuW/DGN+3hJFKE5c4uMfNsxN8ytPn2OgffHtK2ym
2HBbtm0qd4qBvsU/Xvf3Lxu+SK7Zv3mcgSYfqAK5OXzdUFw4u5+B1j866ODL
LwbNTl6W82tkoHuPY/OUSDGYfejHeGg2A3k9FTeJUBCD8G6+zX5LBlJA4qH7
jorBDz95F9QKcD0kNCj9uVQMHo/Qa2vZR0Pcb93l7xU5sLnhmt3fPGE0dmlV
mYUSB2Y6RHJZ2cJoYoVN6ch6DlzTLGq77okw+uv4o1BchQOPapTucogXRpSJ
lizrrRwY8X657uRVYcRi1N2e1uHAbYrBQTfNhNHG7UUn1x7jQLGrP3dZzFPR
ph9TTiXHOXBJ3clb7VNUtOWKmoORFQf+6DrdbTtGRervcq3O2HKgirs9n18f
FUHTpwfLTnCgz+r2r9OfqMjYJQmYn+XA2OJoXbE0KnKPi+CEXOfAnD2Kx7vN
qegjn9yIwU0OfPYid7bClIoUHYurGdEc+PWhikiOERV1q/T537jFgdKun/1y
dKnocBXk3o7nwNWOpTamm6goX6npg/lDDrx9N3fm4XoqEotyTV32CI9/0GH9
jAIV1VjcO/4wmQNL3NIDvi2nIu2x8Y8pGRw46ZUwas6koodmoWlOWXh84WfM
V9KoaK5ENlAxG8dn3a/UWSEqehG8d9vTHA5MGxeS65wnkJJ06pP8Ig5MUbj9
MWiYQCFXdlw995IDhcyo978PEKi3r8FK4xUHbjUrSdndR6BHORSJV4gDSYeW
+CMdBFq860hQRRUHvpSSoHo0EOh0Ftc66D0HGirceXWinkD1YsE7dn3gQOCq
OOZdQ6Cw9tyJD7UceGVFfm9zFYF+aRvUR9Rz4DqbS0qKbwmkl9aRYfSZA69J
1czefEMgymlR24avHHiqw3VLyisCHWtO0oxt4sCikncSB14SqHjHf5JmLRy4
922Y75IiAp0RdvzU2saBAr9Xp/TlEeiz63xm3HcOtL9s0jKeQ6CNDdHXjndw
4NrfVg4Szwk0EI9AZxeOX0fu/owsAukLmC1L7uHACZdKpmQmgZKdhibt+zjw
3UuV74/SCcRfG/B5TT8HVn0K79d+QiDLzZJP+wc4sHDm76H5VAKV3HkWkjGI
xy/OMviUQiDJBT1712EOPNva0FX6mEDnbNvhBi4H7tv0QLsymUBf3p2WGh3l
wIBUsSt9SQRSUab9zRnnwHgR9suV2JHRCQ1efzhwwfCJgHcigQb/qmWrTXFg
dz7L/d/3QbuP14T+/cuBzkfviJ7CTim3dSie4cCdoo8HF2ELrp3R8p3jQP3H
aYsbEghkHXlDWnOBA1s+SkX/+36mdFx+msfD+bb9ssO/73P+B/q/TjY=
"]],
LineBox[CompressedData["
1:eJwd2nc8ld8fAHDCve7ARSSpJKuS0TBKzknRlxQVGSkro0ISyUjJyt5ayIyM
FBIqDlnJKrJC9some/zO/fVPr/frufee85znPJ/P+dRnj+nti+ZbGBgYIpkY
GOh/x7qbEmSuuypFPaf/IaE4g/FjuoL6QLu80Iju9nP+9oKCN4Cj8+6cZ9iH
5BqSyG32QNuzPvQpttMZfXYWQWdw+HDdahT2Z93++5uWD4GUifBcBDZjXv7M
WutjoGL9514YtvDnVdGVVW+geozqG4ytWg4NF3f7gQ65T3sDsK1qvcPmTwWC
W3qbGr7YAc01lTOWIeAw7+QWT2zdSaL7okoYELJ/peJO/7x9Ot9CazjonzvI
44ztvKCRO38jEhS/yb9zF9vfZerc3GoUeC2uf8UGO+vxEc/p3c/Bvnv3Woyw
iwmtO6fevwBnOU5Y6WE3+jsXTJyKAXcIH3y1sGfDiyfGLF8Byk1rO4D9OEC6
fN4tHvxoohyTpf9+nQfnvEoCYI8WCJfAjrkgnDnbmgjye20mt2EnRzguz8Qn
gZFnQnNU+vi/KlVnbiSDv0wyvoz08fVv9E6tpgBdmtG10Wck1Gvylndi9xsQ
MfemMRd7LGnTbHzkDTgRVq6bgj07qPX+7/t0cCH5sV00NvPNubNjpzKBz98T
ek7YovbyHsOW2SAIhpCPYPN1nLa8y/cOSO4LFxfCFnCdYJtzewcSnff+5sAW
/qJ0ZVblPUiIit4cfUpCsid7/0235oD7qo0XnmMf6/OLsVPMBa1GqoJe2Eqe
h05Nx+eCTx9afGyxz1R4hk7dyANt2cd3KWPrqYkemFz9AMaNDbwGoknI9cIt
47+7C8HpcyfSeLE3PGW3/wksBHc2RAeXokjoUT7jz5/LhSD5XUhOB7bXjmen
ipqKwGbX/i2x2MGD5aJ+vp+BlqxpoAB2vPOuCdGpEnDJcYCXNZKE+htHFGWM
voLHWbPEZ2H4fm6e354R9RVM/wiUtMW2YMr7J1z7FQiSggmnsUeOPnzLp1AO
COcqGiZDSWj8BY8gA3cFSLAuGYPYC9eVmRoqK8HTq4G32oJJiLT88pu1ZA14
pFvs3x1AQvK+7S7qJjUg8uR89TtsK55tEuKRNYB8oHfsMXalTHhw/3INuCRz
+o8ottfNJ5cMKr6DVG/7dzb+JMTQ6dB1xrAOxHy8LLn0BK/Pn9f3OVUagXga
Sx/Zh4TCX6tceHStEbDwbDfu9CahdJuBfVNOjWDu7v2ZLOyO1T2/a9MbQdhE
svYFbHm+2BNPaD/A9NSs+nMvPH+tiC2bv38AAahpJ+VJQnfKHgaO2zcB4YqS
H48ekdASZ2TW74AmUJ6f3aqH7W6SVl+T3AQ4nGREZbADGX7Q3rQ0gbxs5uS+
hySUpiQUZX6sGehEbGirYfcUlcd2M/4C7E0SQmLuJGRJbi+u4/8FpqbT/Jix
J/Un/nw+/AvMFLVf7ntAQmtLPEIvzX8BJ5fWfa+w+eQsX+t++wXcUgjDO7G1
cknZjaEtgOlso5WMGwm1btnVWPKmBYjgKfFiX7t4aOZtWQsg711VWHUlIesZ
g8NB8y3AIF5MuAr7iVTmRzW9VvDws8Fjc2yOh6hN/k4rMMsUenweO7q+eVnM
vxU0cy7zyGMn26wfJ3xuBTFqVYxs2CUZ51HZ7jbw+lrnnmIXHI9WTXvfy7cB
QTumlQzsWnWnLQkX2oBKqdK9F9gdo69OP/RsAydqCGbO2CYKeea2MW2gbf1V
6w3skSfVPlc/tAHSNYslA+wFsZnq48NtoDg5RhVgP3BiGdvP0A78H+y+fwib
uWo7hX97O7ht+O+qKHYAr6QE6VA7yI3Yt8KPzWWhfG5JvR0Uilefp2E//3DZ
dtisHZjWd10lYAuy3AppcWsH2n+c9q07k1Cq9sN3FVHtQFYvOXceWzI54kfe
23bQ9ePOxjj21mfSi+hbOwh4ftR9EHs1oE6gbqAdHJ5+P9iN3ffwpnL7Zjug
Aj+5duzqu0SrQf4OcCXl2r1m7LeWyUEzRzuA5dSv5EbsqCsnc9e1OsDpoIiK
Omw3ze42knUHyPZT/P0d2/SU6waPbwf4+OjeSA32f3J8wkKJHcA8eniKbqkD
H9Qkv3SAMzay8/TP8+6+ePtYWwdYEyAv0X9vjWsqUnWuA0SIkzfo4/URAosu
sv8G0w7drL/o81sR77m27zfgAlI7Oujzm6xguXX6N1DnSpHroc+vz/SAk9Fv
YFw8YjxMn1/Lppany2+QfS7p+RR9fjUx90KifoPtqw8GlujzK1aIefnuN6CI
C51mwusrmdNSmvr9N7h4UeETO/bW13eHc4d+gwmSjcYO7NXnNDbE2AnqhixW
xLGrPdT12uQ6QZP+pY9nsN86Dj8YuNgJTMeefdfDjrrhlTRt0wmIj9SJt7BN
LxRPsiZ3ggHO6M1w7P9UrmzlKekEn1I8StOwpRSWFPZ0dAI7PbcPJdhrgoe8
FWhdoPWXktIMdt/WhnSVA12AzV2njYL38zdW68YLql1AdowvW4y+/6dTdtx0
6wLvHJR2mmG7DSifvPe0Czjq/i18jG3W9sficU4XKLfriE3Clkbbc16MdIGT
oWyqo9i8efmtr5m6wdff0Rzs+H1cT720nrOrGyT+GN9/BLsmJOi/79rdQJr7
kYkXtpkR459V1A3Kvj/ddhS/3+qX4phZO7vBHFNPwXVs6TPH929d7AZt17pQ
FD0+SDo6Shz8A1yOX+ZYw47eGKFcff4HvMgMmmzH8cRt1lvmRt4f0HKtmY0H
xx+zISFdx4Y/YLz3RtoFbD5LyR+VW3rAyqv3+g3Yg+etBP7I94DE1NdznTie
ba20FnZX6QFAOsNitwcJKZ+4I7HzYg9Y/c/jqBl2/AEXxSu3evD9f5qcxDZk
DTRsjcXXjRFxG46fAQ9Dr99L7wHX3PPCrmMXLURa83zsAZkVj31zsbcNxrpd
auwB8x/DinVw/P1Zmh3TsKUXLCxohGXg+MyokJdsy9EL7Cxm3zHj+C79riCT
TaAXiH5k1TDCDoor/Xz2aC9gKDy4xueLn79rU2eVZS+I9b3pHIfzQ/GRRQFU
2wuUQoaezOF8MpGxKmzU3guGSI7QPBDn870MBzcGe0H9LEtYG7YzJ+mE4mYv
cFdQYi4PIqEjk/xXC2T6gMGTLrO3ITifpCrFvovuA9n3Lb1/RuDz3a5TKZpJ
faB9/sjLazifskafyZrM7gMczevXx7HNvbS+SHzrA7bH2/jZcP4WNDHtSlvt
AzOkK8fN8PnhKb/PzgTjfnCIRybRLBbHu/761PO2/YDHvOTX9jgS0s7admjN
tR+Itz4U+YnNBd+o6j7tB00tYYJq8TjfmNfeZqvvB/GRRXlaSfg88I6rzPn4
APieLVJW9YaEup2vaIipDYCsvNCH8ekkdOJUckvz5QEwH/3F3jWDhFZ+Hf0r
ZT8Air8yMchnkZDDqt7WobQBsGdbVOf3dzg/q76yuMg7CIRqvb8YFeD8zDEy
vbl3ECQ4ljgYFpKQSLu0a5bMIBBrKnC8UoTfp1tlIaznBkGFH7++8We8H8IG
C4o9B8GkY3ipN8L5qvMA5cDMIGhUrR4A30hIwb4gm6l2CCx8vut1rxOfHzeP
X7vTPgSODp0lFHTh80dQCfXP0BA4WGfzY7Ub5/e0yhtFjMOgfuHRaf9efL7r
bt57R24YfFs5mFQ2hM+PZ2eedicOA0Viv17CDD4vCe9/VOg8Aqp047fxksgo
MidLUsx3BPAvVJXHk8loP5TpiowcASc+SX08SCWjy1fkj9lljwCT7vQb5znI
KDtMdV50cAR4vrj7L52HjIw3TK0itUbB/vkzvI1CZPS19aXWbbExsMs+DZUr
4d831Zn/d3gM8LYZqDhBMrKYYH/mBsdAkPlwxgFlMiIzPf7jpz8GLivH8L9Q
ISMtSSvb5IAx8LZ40SRIg4y6vY4Etk+NgbLuldRaAzJakamrOlXwFzyL//A9
5T4ZyQRuKPGpTQCWwPH9joVkdOjG2vWsyxPAcgufVPknMjqiuuKvfH0C7NOZ
2txaTEayDAst1g8nwEhk1ManMjJSdJiwLf0wAfSfFkvtriWj/ww7424KTYI3
6tm68n/ISF2ho3xTahK4jy3QknrJ6Cxv21jkiUlgc+D6HY4BMjrf2CRbojcJ
pPQmd06MkJH26e/13CGT4JLkVM+nWbw+EkUbn1cnQZbMrZ5kAgWZkgqEL5Km
QNJLrz5xEgXHnw/qw7xTQG9frtlbCgVZxL+P5jw0BY7u2NL+hUZB1lvfSFpY
TQFGg17VSX4Ksp15rb3qOAWu+R1YfrCTgm7XJ7uEek6Bw8RSHg5BCrJ/El9Z
FDeF4+V/nkdFKOiuedy4ZuYUOPR0vr5GjIIclGO4BgunQEftNReT/RTktPb0
GsevKcDD9mMwXIqC7rdHeSX3TYGlJp/4g4coyCU/Il1hegq8Drn87tsRCnKN
CGusX58C1R8juCzlKEip4Mzqe5ZpwMfpfeYndslr1WA36jSwCO5+U48No1T2
nOGeBgWGhXrV2MjzdB4n/zRof82nXYJ90v7UmU7BaXB7liEmF7vMWLnjtdg0
+L77vnQKtrLmSZs7ktOA96Y3ZyT21xOQQfHoNFCzlAGPsE9LgAiC4jS4xOpT
eAO7gl9J9IfyNCA9D36kha1KOlH4Um0aKCLdyCPYlYvHNSy0pkH3w6l5Huwz
Q8f+SOtOA9aj5onzsnj9m5rHfa9Og/m9/3ibsL2Q7Uq32TT4mXJWJhu79EUi
T5DdNGBWCNQ1xu7xVdw7cG8avPz2zOwo9oZDi/TxB9Ng7u87Hlbs45pkjVG/
aXBWSdv69VEKMlBM1oeh0yBQisxpj31/n5Ll0+hpIHR0j+Fx7A9M9o9VkqbB
kWtNg5V4vaUK2gsSPk8DEyheU3qYgs6n3K1cKpsGGu9Lkl2wrcPZmjW/TYOi
/khRGew31ien1n/h9Yt2EXyKn9/ePW9EDKbw/bxdnVaVwevJfurw+3/ToNVE
mTQhTUHGq52QdW0a7P03+C0UO/YXzTCfdQawbh8+/QPvh23+98O5hGbA+HVP
UVlJCpJ14oq/IT4DtnRd8fl2kIK0r2dmIckZsLFnLsQAO0ypp9r2+AzI+yeU
4ChBQZS5M5s12jOAMC5cGoL32/6eXqrQlRlg98LPgYb9X50rv7PJDDisfLEp
eB8FeadmHxWznQHvxBYivMQpaPPKNmtP3xkwb8wlri1KQbvU3jt3BM2A5ifb
T5Th/a0oe9ZXJnIGSMfbbB7EdqY9TPwTPwNOG7AEbeyloLnyobbjRTMgf791
k+ceCho+mK8yPz4DtlZbaewWoCChBzbmB+ZmQMNSxMKtHRRkWCvsbbqMv381
9UY+ft8ab0aUN7LMAt7TpRmnt1NQUardqaxds6CgLSJNlZeCAvccOGmhNQt0
5OLqezjw/rLrM469PAtIQqckydgM6PmjZsNZcCRa2lCGnYIcr7Ei5RuzYKu8
ibAzlYKuvRxU2v14FvSGFNhNslKQDE+8YlvuLEh1Tb9gx4if73VdQ46iWaBd
FFx+j4GCXueyu6miWTDaKUJ13SQj/osPPuXVzoLcpxI7HqyTEXOIwbGwwVlg
9JtXxXKZjFpYeeTVt82BkakqqeZpMnJd8zv82WUOgNjRX9zdZFTvYBbp4jEH
qMub6UWdZCQ4ofhP/skcUL9tzGL0m4zKu6byP0TNgajlOY34NjKilugcy343
BwbAbUWWJjKK89hzMnFoDrxouaOuX0VGpYTC808uzgN7YDIq9ZaMtj4Mz1bV
nweDQXn/nmTi+L94i8ZiPA9C3CUT/6Tj+D+y66eHzTxgkrD6451KRhe/eem4
PpkHqrv5CPnxZDQQoGVoWzwPgpmr+lPCyYjIOXJDe/8/oL7N4uR3BzJa8DVU
eSX9D/zm3pu0ak9GQxuNgmOy/0Di8k3O/XfIqHK8sPXhqX+g5oL3Ng8bMvKp
DlDJMPwHvEdTBrdZkBHhkdSeLSH/wMnfUjajl7Gn7rVlz/0DF9S5EvfKkRFL
HcsZypcFUJB3+bnsLAlRbWLMur4uAJ2ep7JlU/g8yHb4UXbNAhDhG+s/O0FC
wueMCy+1LYAOE617+iMkdLqu6EDM3AKg6dVlX8X5+nHdbdrB/Yvg9Uk3SWoN
rt/r29vPP10EtOuUYQ58flmtz7IOv7MENgWemB05g8+fum+379q1Ap5J8FkU
+rOik09sbaqzVkFxxf6O8V9ExJ/zRzc4bxW8um5+e+InEc3/1lLW/rQKfo9y
HZxqIKLXUoe39VSvglTtwVML34iI2rqIFvtXAV+y1U/uYiJqEfHYKsa/Btp0
XdUjXxPRra8Rn7x91kCREp/TxH0iOj3B/Pps0BpIHJ3hFrlHRLu23QvljFwD
Eot/OYzuEvH7oWcem7AGBKssLnTYEJEs106OD5/XwD7pv4enTImIweS16cDs
Gkh9r+QVc46IojYKSKeM1gGr7KN4fRE8H7EK2yjzdfArL+WDwF4i8tL80TR8
ax2I9Q4d7BckIvv40djA++vAJz3P3kWAiM4r8x9qCVsHtTlybk3cRETwcTW4
Ub4O7sq47lRgIqIHb31LPtWsgxdvCh/IMeL1aIkQZv+xDm7eUZpW2CSgPrHM
yZyudSBQFiR/dpWASr51Pl5bWAd/6zOD4ucI6D6bUkbIvg0w8rFni+AgAU0d
Vaf1SW2A/2RtP1/vJyCLa5cdj8hugJOXfBTe9hKQdrYtaFfeANtYGdM1uwlI
5sKrJiHDDTAhmhZR10pAac4Z8o6mG+DznMpzhRYCEkz8GFtltQEMvmUVpDcT
EPtcg6W14wZoDiTcjvlBQGORDGsfgjeAbN3druLvBGTyhWrCGrUBwqP0f2nX
EFDbIF+lwcsNQOV+qTBdTUCVsjKhm6kbYP7klttylQSU2GYirFa6Aa56zsWx
lhLQdkZbv5dV+PsOHZTvJQQUus9lcqJuA/gQ4KGIYgJydwkvCO/YAMkXeRuP
fCagKwJfNTrnNoD46Da14o94PjYzsx9WNsB5veDdz/Px+pTsfh7CuAkKeQIY
XT8QULSp26AyxybIuynJqZ1LQCJ56QECvJtASaL74tkcAspjaZdZENgEByb3
Vqu9J6CfaUfd3+zfBImS++8aZuP7WzET9pTZBMrf5T7ZvSWg6bPhNYbym6BM
+O6VwCy8PlOTvDTVTYBOuFW2ZxCQ+tG07Hsmm2Dsva5YfRoBtfu06GhZbYI/
B+a4dmFbtTGv7bu9CeL91SMdUwnIx9Xkvy63TeCZs3zn+GsC4qkLmcz33ATL
Ur4db1IIKHlXcWSo/ya4In5sZjd2WSl/76ln+H6uGintTSagC9xqvjtfbYLw
ihL3d0kE1HPd6eBiyiZocBH0UMG+nZ/S1Ji5CTg2P6n1JRLQBrHZOT13EyRJ
Pur0wQ7S3yLoVbQJRFPYThzGFsiQrrxaugluHPxoO5xAQBlr16zlqjfBiRMe
DknYx84HcXE2bIIitz0XLLG/vfpUMPZrE/TobxAOY+vNjF4r79wEZ9MknxGw
h5T5WOL6NwH5nDOhL56AHCNVM5zGNsG+Re1LFdjMQw4XLsxsAr+B4YfvsMPl
khb3L22CoFxiUBL2Hr8fscybm0D1pIJrHLbexOaeqS0M8F7kO/UEbEHebf+u
EBjg7V9aqxnYw0qS1dUkBuh7MTOwGPutpcrLo2wM0CWMeaMN+16ooW0ijQG6
2qifX8VWKrx7kmMrA6Qq73ITwfNl6fPf6raNAV4RavTWxa4lJw6P8DNAg53G
N8KwIw8XFunsYoCSwe7CTdiGho1BZXsY4PT9wDwBvH57vYeNpUQYYNPcS15b
7LGsjcMx4gxQMMbuTBV2TgsPkSTBAM9se3RKHD8fl02JDkcpBuj+apYQhn1S
/HRW3yEGuPwyKYgRP99GZ/tLnxUY4GPNnJ/L2M8S/UT3nWCAqpkavh54Pxh9
j1+OggyQXTX+Lw3vn0mBhle3z+D7SS/NVMX7K19lyL5THd/Pm8fr49gPbNdV
1M4zwCmBwcEXeD9S0YFxIR0GyOJlZ8qWjuPP8wvVD/UYYFS2wql67I93nZI7
rzBAq5pjBtF4f5uKfTWMNmWAD7I12RTx/v8YbFBHsmOAbdnNGZ3vCCjQ6tEb
i7sMcKl89/UW/D6ZKr/2/nqPAcqkxXO24veNujBz4sEDBhgjni82kYevX/V7
O+2P589pe/RWIQHJy2X7nwtmgPxSO4JfFhEQG+cvi/QwBnjLfjno5ycCKigX
3H39GQOMKJvU08bxgU2iIKQ1BY+f5DuW8hVfXxmyK0YMUOk67/q9BgIKbqae
21GOPy86603F8cvs7aF996vw71dkraX+xO+vqXuvTD0DbP0R6DH9C1//xnMx
5TcDXGVY9arsxNefnT4cuMAAvw4uCLj+JSDzo4n/9CUYofl/Kh1vqETkH8zD
8UCKEToOK9h/YSeit8NPxOMPMUL9pYnyZhoRLTy/fWVInhGK/Ey8zc5DRE82
FEvtVRghvyhbduZOIkqvag0MuMYIc1BSVIAUEU3qswl/CWWEU453GQN0iMjJ
/f5FwX+MsOyke5hzGhF5j0U01ddvgWeU9i7k32JFGvs50qgvmOARGoN/hSAJ
BWXJIg0TZtjDv5JcVUZCosbiJlnXmWHuiQUW3QoSKubi38JuxQx3kB8mDFSR
0LTT+qkGW2Z44yXLo5VaEtJWLq+64MYMRSSMEmmtJCTQeqHh8lNmaGfe+3Vg
jIQyGWy6jeuY4VreuVu7OclIJffaw9JGZgg5E63suXE9bK4lKNTMDIOCAs2/
4vqb9v2waX8HMxSVf65rxE9GDlErg+Yj+Pt/LKfc95LR8f1PJm4yscBMxe9B
V46SUc2lpDUHBRY4dOED1yNdMsrx7ut4qcgC07Y3tlrrk9GLj3sKywALnHPJ
+KB7hYxu7oh3pKmywAk5k49iRmRE6o+ZzLjIAjsydD+8w+en/+yje/puscD+
tmcfzB3JqCLUr1wrjgVG+GdMa4eRUWZZdaJTAgtkF8/s2hJBRpHzRI+4ZBb4
JsS//G0kGV3X8zkxns4CdTts3Rie4fOroGe+70f8+VHKg4A4MlLOdksrbmSB
UFOIFWSQEaq7HSjBRIDRscYVvF9xfb8VUp4SCPAqUa0kvpyM0gxo/oxkAizq
1T0uXklGIcPvfFtoBDiweitf6hsZXWOcffxoFwGK3LaKF2wgo7UjDs7NCgS4
1mzi59dBRnaup5eUThDg76+l8C8+/w6UbnV6AwlQo1/IRr2LjL6f/+DgfoYA
0xw69zD24PWyWrgtrkOAG49khzQHyUgh5r6Fmx0BmloayNtP4fvv+29w6C4B
Lsp0Dafj87fgvu3XLzgR4FEwx9A7Q0as+YUmou4EWPlYzkZlnozaGlYMGwMI
8CYTTWBqiYzuMT24JJxKgCseJWcqcD0wpnbuZ3A6AVbIdpxu3oLrh9CdF5az
CPBNwKeEHiYKUtlZfL4+jwAXDkffn2GhoK1ym2r3y/D4x40C5kgUlHPTA9Z2
EeC3beMN9zkp6IipcbVoLwFqUypM9bkoKF8faHkMEGBGV5W5HDcFFf63biT7
lwAVjf2L/m7F9buo88P4JQI8m0iJOMpHQXV9dsUO3ESYv9mQfG4Xrk87NFUb
eImw42QIK8tuXD/9kKzfx0+EmQ08LYXYzWi8q1uQCHt20LJ24HqsI85q/T9J
Ily5I34S4XptxMBYcacaEfKF1hYG4vrv5kVQ7qRBhJ+3+Ybz4/pwXG2Xxk9N
ItS5uaUxBXtKvvOK72X8/Xjx+3m4nlzg1XOdMSPCjPFlxxxcf95nl2PSsCTC
s1vv2xzA9ekyC2/A65tEqNqWW5WAvTbf9OLKHSI8ke+a5IPrW6YmzaIKdyLs
XTw2K43rYa8aSWXBx0T4at5/ORKbUMZW4+JNhKEFoyYL2OT339ulAokwiotH
5z2urwPT0k38Q4jwRob3HzKuv9ni/UYHwolQk3auxgSbFnJm+flzIpSOk0VE
XK+H+4h6zMcQIasC8ftl7K3uLCTNeHzdM+BoEvY2m698zKlEeEmff9+RI7j+
PQvkbfOI8L38Ex/ZoxQ0WXprPfgjEZqybym0xi6Rf1aWXUSEJxfyE+KxjUVn
NGYQEe6/7RLFKEtB0rE7ubjKifBaplG8JDbjVvXWQ1VEOHXpoIk+diJjkolD
HRF2bSgwp2Hb328QjWokwojHukPfsU9Nrf790ESEB+7wu09gb7UQf9/SQoT3
3Ry+U+UoaKBT+95iOxGaaOnV78P+cMnjOF8XEY6FF/qcxvapyWJQ6CFC9oHA
eUPsyyc7KvT7ibCyq2rbXWyxAkKAyxARjnCbTPtgL0ke1no5SoQiW7Xcn2FX
pxjxfB4nQoJFUGkq9nOBwI7OKSL84c9VlId9M6Lg1fosEcast1vS/33pGHnw
+q4FItxz+E9NFTbFg3M/WCbCzue7+uuwOxdPTBmtEeH486h3P7AzbW/mPdok
wsNRyoebsN0Go50TtrDCZlV1/Vq8nucMvyqVsbDCWhYj6+v4+UyqCXxjorLC
zZS6f0/x/pEWqe/y4WOFsUd5GqkiuP6PWUlM3cEKe84lzWQKUdAPLjGr6l2s
UExgt/J5+r/XMTyaJYmwwvDBHfcjd+D1+i1DDJJhhVH+QXek8Pt4LDxKOkKd
Fa59MTRJwPX+qU1Dz1durDBeamGvJ45P8f78o0yPWKHI8z//7WzH8Yyn7byV
Jyvc/iFaoLCFjPIlLvHL+LPCyf1z7f9+kJG4gdr7sqeskEXg9qRnNa7nPxz9
M5jDCksua3nPfyCj5pvsxyVGWeFOIaF1WVxvSy98jw8dZ4XPNPWMKKFkFOTh
R/g3xQp9mkLze4PISPUZ888vC6zwYHfP2Ug/MiqoWLHSZCbB8R+M/3F6kFGM
4HC0/W4S1JfMFbe2w/G+pWS2QIcE91U25L/XwvmrtyaqX48Emybu5oycJ6NP
f3/JsxuSYJTydNiec2TExTjubmZKgjn6cwzP1cio5AAfhf02CRZ/+fElTpmM
+D3s9po9IcGS7m0vCTi//TiwR5vtEwn2D2mrnd9BRm6yEotyxSSo1rQt4et2
fP8n5V6YlpKghGft0jE+MnK/fK7nYxUJPimwSpfC+VTCw9natJkExWxWRGQ4
yOhJyw+vjxMkaPag7G8kExkpeTz+YCJIhoMPgUgfrvcXFWNM3PaSoWCJS1nc
OAm9W/rA9lSUDGu3q+lc/UtCe+1GzWslyNBC7dWVnhESYjXS4pVTIMP+NPmx
9X4SalLc5US9SIZ9zu+XojtIKHBJbq+YDhl+XxkYtG8nIdW8Cw0n9chw6/3X
lVptJFRwwFvM6RoZEmXyTbhaSCiOf7y19yb+/uCpf5k/SMhqqVD+oycZbgdO
J+j/n7Anr2nghw8ZulcsyR+rJqGO2xOh435kmLk9co8cPp+cGxYc3RNKhj4q
fR9l8fnlUIvv88AYMuy4ZT+iUUpC67k6KyYfyDDvIWd1cyEJhd+e+UQdJkOn
3Cs7zmWSUCuIYb01RoaBxcJ6dzPweYZ2RufbBBnutlH49DKdhFLfxUx6z5Nh
ZEjT5GwaCX2eObNnk5ECw7x8B4pSSGjobpzPjAAFWnRRSrJfkdCB02pNmoIU
qKAfkLMYR0J2W+d3v91LgRV3Qd5J7NU8tcKb+ymw50zk798xJERbmP/bL0eB
bJ+4/cVfkNCx+2cvtFykwAb33LY9UST08L+F2COXKXAj+XyXXyQJlfMljIXr
U+D0N62muQgS0ixc8NQ0pkCJ86UBdeEkdH0lIb/ahgKB3uLC01ASelOjwSR2
hwLdzwVocmBPvljU9HagwPSPwX5PQkjI+fi50ZOuFGjc/er5o2ASCnZb2vHp
CQWKRJ+e8gnEz1cjyWp7IAU2vajiY8Pm23n+g1MIBUpe+sUVFUBCSV+Szh+J
psC9Ql230/3x890475GVRIFe8hshY09IqO9RytCrYgo8Mml4p9ibhO41xtqV
l1JgL+tIkwU2WTB6ZaScAsNrnDJo2IdKfNgPfafAhy/W3lt5kZDnuqVseSsF
LpVEDu3zxOOfM0YjHRTod1XjU9djfN6M0VNn66bAnTy+/8Kxm4+rXbs8QIGP
vJLCGbGFXfb7jExToL/KhNzUIzy/b0I0tnkKfJqmxPgWW2P7jhcyixR4XUNE
0BbboYDy1mWdArevxV2efUhCFQvjv6hkKjzubmdDxjZQHTSSYaPCkpjE9CZ6
f0dU16gOjQqZVgQPxmHzHq1fj+OlQqfgymVZbIu72SIye6lwS0azk9MDElop
S83WEaXCzcTQFHXsYK54BZd9VMgXy8K6Gzv/fei5r1JUKB9cbPrdjYTUGf1a
hw9RofnVn5eTsLu1PEyoslSoPKXk5IZNnL7jqKNIxfmv8Mgh7Bhwc9MZUOGO
H6F19P+flg4x9YtTxuM5avuPu5KQnuSl2OH/qHBEVsIyAzvN+kiFsw4V3v3d
aC+LrfhZQjNOD8/3eenUDuxGikh72RUqtJVPe7gFezmdZ4JiSoVWO5oafrrg
+a+wOUmbU+H1+80Bn7GF1AmMOlZUqL2scjEVW310YWucLRVKnJ3+9xC7W34q
ruwOFQrN99fbYNs/GRYfdqBCsUdf3hhiE9r+5FDuU+Fgn76XBvYLsTZFaVcq
VJyIMjxB7z9waqzUdqfCFO3z0lLYZZXVWs4eVGhaZLS+B/syb2lHrBe+v5zX
pTzYf80Lr5f5UiFL3aYLGZtaoxyyP4AKj4Sza286k5CEZG1heDAVuiv0nvmH
rRGuM7ASRoXvXIsv0ftDrBe62c2i8HwOTTgMYAcaWCl8f0aF36/npXVhZxbP
mB2OocKz566Mt2LXCrkGv3xFhW+s9p1owh73YS5kSqLCgQcWzxqwqX+D+m+9
psKNNIPVWvr4mtvYm99Q4er182b0fg+N3Hh5xSwqZIj2r6P3g1hv22+W/I4K
jSL05OjXA11zg6h5VGgssyWO/v3MP4oFDh+pEHz/sVFPH/9UZV9nERXWanDp
/qSPn6rJplJMhYcVOZJb6ONT2+WySqkw6uvW/t/08e1MTXkqsItuc/bRx2/+
G/igmgqLs20kRunjyzt+HPxOhYyzhjIz9PFjNnrPNeD5Pw/cuUIfn+EJNf8n
fr4RGpP0/pCJ6hcmPu1UGOJWeojer8N+UDhwspMKTfL4E+j9PJJhWfmXe6gw
uFtj9DC2rT6iiA1T4RWDkDUt+n76oiYbMkaFlbNny4zp/SJ7mowXJ6hQR+CY
7h3sydHBD1XzeL2mOQYi6b9//naP1BIVii9mtqT+vz9lifxslQoNdYaCPtF/
34VibLWFDRo9fg0G6d8ny5BJNDZIGpqxOIn3M/vtoiN3uNlg1rmNIwbYkk2n
jNp52SCXwaecu9i2Ly/nvdnJBu1YJnLSsKcOuF1TP8AGHwiwu/Pj94sWyuKX
I8kGZT85eMjT37f54Fz+Q2xw/wqDoC623ecE1r/ybHC05LpwNPa0RlVOgCob
PJuRz7QDv+/TNlzEOhM2OO4QPXECxwujC6O2q9fZ4GedtkET7PojqGWfFRu0
z+5R9sHOXLV57WPLBoPNLPc2Ylv5fVOBrmww9u3LM1b0frTkR165kWzQNz/b
Og3Hs4bfk4wvqvD8vqmyXsHx863a9zWLg+xweGdfv6gfzlfd72y8pdnhC6Gl
Rm3sNPvo7qTD7BCxm+c9xk58aYJ6FNhhJ6zQ68aOmlj0NFBlh/qNSTORON67
hQlTzhuxQ2rU/uMbOB+otz/YfjSMHW7s1jAswPmkysbM/1IkO7ybFhvZh316
i9rqnafs8GxHwEsqzj9KB7Z2vY1lh+8zu2nG2DIP0uPF09mhe5myKzPOV3x7
WsUEvrLDgwM15sphON9aScsy/WOHCjUcXwNw/pviTD1jvsQO92t7fH6HvVS0
U79qlR1u29au+wubxEZxC9jCAT9I77PbifOnxPvBUm4aB4zs8aG8wb67/OKc
8AEOiH6vbs/C+dYtkdPIR5IDBu6LLP5O7788+8RuRIYDrulrLIxiR8c6RmTK
c0D//D87RKJJqOikVvsRVQ4Y65WyLxqbwZ/FXMWEA14/fC7D9Cke/7DbvdTr
HDDi9ScxF2yuzllfkhUHnDjYdSAMe69kT3qdLQfkO9xc/QVb9WfRtI4bB+w2
9lfhfIbzu6vMloKHHLByl/2UMLaecBo3vycHTFF5ISCPffNelGy3HwfkLcnZ
MMQO4rdzs3jKAa8mzjbHY0d/HQqqfsEBx+TzAt5hx1lffbU/jgMmSwuUlWC/
K1Yvm0zmgCzpFzM7sQstS5u00jigkYGZ0Rh2GU1+MCeDA4Z/iwtdxG42FWF1
yuGASs+ANe05CXVRYra3f+CA785v4RXAHsrjOnC8kANK2qcrimEvEhjOb5Zw
QEAJ2DyOzfDunpHJVw6Yzqz4UgWbVX/C7mslB5S++zXnPDZ/RkeEbx0HTNxu
rU3vR7ZviuvLbuSAIUlhJhbY31ZNZdqaOKDhru4Va2xBYbFHDK0cUFxMQpDe
33xf42+9eAcHfDml9+M+vX/ZIXvnhS4OOHPiNDu9P1o89q61cw8HZLJpbHmM
/ahC7lNCPwdUse7bT++vbp1YJdUM4fVAJmR6/7UkL9KbHeWAxz3kHen92T5K
Xqn8Exzw2dVLt+j9290W/y0oT+P99TRhnN7fLRtCVbk1xwGnCTzL9P7v4I+N
ERELHNBzW+L/+8MH/0T2fVrmgME1IJfeP67Iqi8zsMYBCfnDxvT+cvVn7JDA
QINsduH/7z+/l2ln+YKRBl8xLAvSnYh+Bksy0eBeAati+u/VNx/JL2OmQXC/
8w59vJWR6K7LBBrsi9M6Ho4tur7E/JdIg+cnP/PT53+R84rEQxINWjzfRvPD
dhf5combgj+fqr2D3k/+RmG3ayqVBl8umCu6YTef80g8zk6D/XLH7zrQn59p
/7cGDhr8N1dacgtb4p7KjBknDVr6De4xxdbzT+Vb4qLBjwdDnutie8WRYOBW
GmycSBHVwH6Xc8tSkJcGC9+yf6P3j7P+lsr/bzsNhjEZnRPGPjIV1tXJT4NX
4lmkeLCNmeaZ7wjQ4MULbiIsz+n1Q8Gl57tpMPs21OrD+3EA8Lse3EODIZXH
vRqwadpuiaVCNPiCYFb7CdvSDc6MitDg5WznZ2HY4aGJfO5iNCjBRBBwxS5O
ZoZc+2hwkm8ph96/xVtXHXxMggYFpaX5D2FX7rwgEXCIBsd0bKq+4vdzVib3
0u4jNIi+5f5Jwd6lyuOae5QGeUm3Sb7Yjrbt337L02AAv3CoKrZwiYmlBKDB
Xi850yIcH7SavgYjSINu5b3rkdhuwyL52so0qK0TmGaL3cwxxvxABa/vvMe+
3diexvaJdWdpkKzc1eCA48/8hsALz3M0eCnXgXIa2yK2KkxBkwZZBXzFubDV
OwQ8Ui7SoLE1hSUDxzcu7SqjB/o0+LjEW74Bx0Ov2Tu6h6/QYMmZVbso7IVQ
Ac1RQxrMd/D2MaD3v9XdUdIxpsG/Wx1Ue3E9EX9GYOdBSxo0mHVk7cXxl2uo
cmu/Fd4f/Vf54rC9vO5Qn9+kQfHjlxgMsC1LK1eZbWlQ7XOeTj2O35LH73R0
OuDf413c8gbH9y+SlU8DH9NgcbRUhUgQvl5nF6LsRYPWr20ZGnF9EX9rh++S
N14vsRmiM7ZXmt296340aBPmeb8K5xcNoR06iqE0eF2toloH558OHjuu8Vga
VN8ot5Dzxdfz+MmJr2iQUirMWO+Dn+/FCka9BBqMlF3VN8NOCOGf+ZpMgztt
DE/543rDilTR8DKDBldrazqqcX5cXNsedLaQBt+7WKiy4vw5PXfWb7mIBklK
wimBOL+OjD3wTv1Mg4drhUo4sDvaeh8wIRq8Y8e9hwvn4+K8N7afKmnQe67P
g4jzvZe1gtaBZhoU6YFduU4k9MDslkb7Lxoc3dXruhf7nkHsf76tNBw/dleG
3cPr9x/jyf4OGtwcdtC/6Yifp/A3mZe99P14yYhyF+/vTj1uyhQNKlmwsFBt
cX5p8uconKZBufmLA+Y2JLSl5jPFchbHC8RiVGxNQnMfBZm//qNB81NeQrdu
kVBLxMi8yxoNFsWdqsi1ovfX3W8ZI3HCBEGGKAYzHB8/PX1eI8wJH6TmqHhc
JqHqO3Z5V0Q5oWrc/GSRDl4vcbWGcTFOmNc/ozKnjeNF1AozxwFO2NW/umx0
iYT22121uyTDCRktnlzfp4XPFyJ7z3Se4IQ+aQefuarh5x3ydn7iMv78IX1t
vuM4fqn4cjzU44SPX4goix7D5601o/00A07oKOFbeUiBhLJvcBofusoJr5a4
hJ6Rw+er0w7f75lx4vgSsc34MK4XlxUSN29zwhs8j29pHCCho2YVmpx+nJDL
2+4iOz+u55OHjpX7c8Jl4xvRv/jw+gwSRZ0COaHKQ4edL7fh8S3U1zpDOGEW
y9dZQR78Pt1sSEuL5oRsPqSsbTQSenannREmc0IHRbYt71lwfH04kWtbwglF
fSBT2BQr6kHsr/aUcsK/eeaLuydZUSWjtH9zGSf8bNolkjXOiiI87Y2PVXJC
jtpqmbJRViThu0gl1HHCI0GfCa39rOhqMKNFbAcn1Dj6pTijlRWhGB6+2n+c
UDf81H9MxazofGzXHtNFPD/Fc7L3PrOi37EpB5aWOKGfYUHCcBErWog7CoTX
OOHdnvnZio+s6GCCjoXbFi5Yc34oxO49K3qREpUnwcEFz/rsPeuezIoc3vJc
CBLngmvvgp95+LEiccTjf/4KF1TyE9K9ocmKzrGM7/xZzAW7FjhPjTcSUdqI
55oH4oI7OQt4suuJaEvtjt8yZVzwcHOv851aIioIP/ssrIILXkt4yPavioiE
BDO4LtRyQcXUn8xLxUS0cOwmsbGdC0brs3jNZhJRnN3IdN08F7zes7ww/ISI
pn8PfP22nxvek0vW8lYmoln3vaWGEtwwVfq2oh8kovk9psVTB7nhXEycV7AS
ES1Z/ingkeGGAf23NWKPERHDfHuWiRw35KWtZdYeIiIateHp8ilu6HyJ5OKy
l4ikFQtv7bvKDVtNys5cIhDRoT+LVp+vccOWyENGkcxEdOSxrIWmMTc0Yn+6
0bqFiOSrc40dzbjhJ5WAdYtNAoLab3VKb3DDE6Yt21KWCEjLOgno3+OGZI+4
t+l/CegiR5/iuBM39LHfS9k+RkDaOYLHHjpzw9FLmhH+IwSktxR7JMWNGyZo
TWg6DRKQsdezfTOPueEXRs2X9/8Q0O2YIG6/EG6Y1DHhvLeZgGoZhafUw7ih
mFqoacJPAtpvWVRDjeCGE6ePUIV/ENCAzLBHaDQ3DOwU7JCrx79fBaefxuLv
H/rd+6KagD5ItH7Xf8UNV/KUtGEVAXGF26TuSOCGr/61zo9VEFCd4Ytrr5K5
YbChxz/NrwSkPDtX+zqDG46IUY0Nignola5/mlUWN2TXPPBu/xcCWvss6LU/
mxu+oW1EMnwmoI++546/zeGGkMvk3JdCApLYmfrmQyE35PcMKKf3U/g9PuHt
9Ikbmgx9JLjkEdDQcJOxwhduGNfrccw9l4ASchj4viB8fwFjCc/eExDvfwY+
5VXccIj/RhjvWwK6mzVt4vMN32+ctKdKFgE1cvme+O87N8xkJX10ySSggK7c
+e/13PCOcxvrUjoBjSirNwY1ckPmGnF5iK2a1pOh+ZMbTnIdqw1+Q0AMd9nM
mn5xQx2KjzJII6CrbUlKUa14f0lQjiSkElDRiWP8uu3cUGigP42E7chq+aOj
kxuacYrKT6YQ0E+b9cyYbm6Y/eO10U1s6aaIJ9d6uGHfl1ThiWQCGotFoK+f
G6r+logjYJ9h0t2RPMgNif85Xo1NIqBkq4kF82FuyJNe3nAMe0u950+xUbz+
qp+XuxMJyOgw/9vRMW54tf/tHz/sz8/e+WWMc0MCX7z3cWz+DVVzm0lueCv9
1NRcAgE5mXVBqWlumL64tjsXu7n6rsDMDDd0vNHN74wtI0leypnD81tM61PB
Do6Ib3L4xw3lC747b8ceX5LNll3khrr3zfrm4glI7Vqd/9ISN3xseWzXL+zX
X80sila44ZnaKskv9P6LfSsn3dbwelVJ8WRimwSH7lTa4IbVIqd+0vsriudE
lzc3uSGj4kMLev/F/wC7PqI8
"]], LineBox[CompressedData["
1:eJwdmnk8lN8XxwcxZsgMI5VUSClJFFKpe62VVKi0yVpSqWSpREWEZC8lEUko
pU1CcomQsoSEUnZmbPM81izz/O73N/94vV933HvuOZ9znnNezyg5nrM6Lkyj
0UxEaLT//iZedRTTOuazNSj+Pv5w0cPDA5sOKB4CDLnhpWmYm3eFuisqngTD
5Wmvv2Jet6HmMbPJHcQ2ee1ixnPRxW2HpEQVvUGctA7hgLngQOcl6sQ1cGVZ
+/06zELZOcTMz+vgl9gDI5sHXKRSML1iavoGOOWdwRVgNi2FNhNLb4Lrdz2D
8hO4yOXbjehRozDwODSKE5nIRbcaKsuIE5HAwzH7pu9DLjowRL86YRIN6kdQ
2/Uk/H33ZwvGf8aA4I4PrJRkLvIeN387evIOWFXYItnyiItCLw/vGpmOBcc2
Xa5Se8xFL65rB/CX3gcWD6JPyaVxUaHYz8XDr+OB4WTGmtfpXFQb6p07aJQA
okQD/I895SIypnCQdyIJdK1vS5J9wUXXb2mWjvomA28yzkz6Jd6/yl961OQR
SPEKMF3xmosSLFWekz9TgJdOFTfuHRel3vb6RyQ/BoezdE6Pv8fn/ygzJU6m
guauHuJ0Pj7/0Mn24ekn4LKA+eEh4qJ2hyy5waVPgfWL6+WKX7mI95hyGuh7
CnpGYkX0q7E93Rav+18/AzI7Toae/c5Fc06N7OQZPQcm2RpSC5u4aIW7nn/v
iZdAKnqq06+Hixa0GJ/wWPAKjFZdcdvL4yIFn8G5I76vAAd4OukP4Xh83HqE
NHkNNnp5UxbjXKRr0D7G//kGnDE1vuFP56FNHTcT3PTfgieJqFBEkoe2Bqwz
4ie/BaL2b6wfsHlo2+eAqOGT2YA0qJFlyvPQwR0rVg9NvwOp90J+tK/hIR/L
0/b9S/PAq+te1w4d4iFBgO7Cv2F5wC3x5PVEOx7yyxGqq/uXB/5tW14/cZyH
AhfFGeXX5wM4tzF8yJ2HIrpLV9wMLgBu5749+RPOQ8neSwZXDCPws7jJM76c
hzpr+/S17EoAjfG+irajH6mc2r0wM7YERNZpVz6x7EfOItljKt9KQJ+XucHh
w/2oT+da1oKNpWCJtmMJ/3Q/Goifp0jjfAb7ppbJV0f2o/FjhiI1ZWXAfWtH
onxLP2L8e/DFVaMS0CYWoJCLA0gvuPmymUMlWCh+MlncfwC5zJuvvvJOJZAd
V9sTFTqAyrRiIjr/VYLcmqILOYkDKPBUyN7Dn7+CNwHeTw6VDiDab8/WbTZV
wLjYqatZZhD5/E27JG1SC6wtL75HbwfR+U/Xwgbc6wGpXMvJnR1CGqm3v2dn
NQPou2W/cT4fycZpThR9aQZ799KLLREfTd+qUqjqagYVGqbpR0r5qMKD7tIt
3wKib2zIPlbNR45GPoJ5wS3AKqE71KyDj2I7HFdftPsFrp5M0jnCINCM4rob
G9mtwHDat8loH4E6ZGuemaxuBV9HZkcrDxLoi7hrraVpK9CjN2juOkqgu/wn
i075toLw9tI/hs4E0ixa+Ca+rxV0PAyikRcJ5GQn9He66A9YnLhk0DqeQN27
XRT+6rWB+PUByVMtBJItc1W5atIGeq75NEX/IZDhlvPqi63agCypUresg0DJ
qy/rHzndBkbuXR7ewCWQjXiYzc/ENiC9skVOcYJAdcUvE2qE28H3o0FHedIk
EtqYnXqW1Q6eW2fFqc0jkear3OdzFdrBQfdna44vIFH4w+KCnTrtoFzhivmX
JSTa7lP/u/xEO1jFNnlrvppEhdoTCkXf2oHEquiRTUYkGsycVrFrbgfd1NnZ
xaYkUlhGWyPobgdH7sqKTG8nkbc0Y4s+hdkmuj9lN4m0h+SP5mp1gH/r/OKe
HiLRs/Stia/udgC7LM7H8LMkal5i9GTP4w5w/wybJnWeROJ3t70YetkB/DVb
ecEeJDoeaPFR/UsHMG6xTHW5RCJFB8fWjOkOoP3179JWfxLdkw9a/Mi+E9S3
9i2PuE2i8c7q9N1nO8EWiY7d9bEk2vdi/roZn06Q9j7kBTuORDLwqemBe50g
QNxm3COBRGHHv52bW90JFF9VK/9OJRFPY95U/q9OUD5y7XhHGol2TB4NdOF2
gsJHdtltGSQSuzUcVzKnC+uL4fT5OYn8Xsl88t7cBSK/jVzRyCbRH+8j5qo7
ukAtSHgw+o5EW4xSGxusu0Ds949Jb96TaOqHTv9a9y4QOJi9Q+4DiTynD8r2
ZHQBa73aTJ9iEtWVPnp4O6cL3N+6PpBWQiKtCN5Kg9Iu0MZfp3SllERDir5b
Ev52gbXHDO4fLSeRi2mSs5VcN5C3jZX78I1EZaw+PrWsG7TcO50xW0Wi5c2a
Pi+0ukHBi962DTUk6jj9KVJ8Vzfo8KXp3f5OIqgjIZ9zuBuIq/3ek11HoiTB
3lQnl25wO+UXraqeRDbR3bmFAd3gTcp5pe4fJMo/rGHkGt0NzkR+Du1qJNFC
lYtVC5O6Qfj8XL9fP0nUmCPe4ZnfDfokU8ReNeP4+1m6Kld0A4/MH1HhLSS6
vSN+vOZHN+jeqZjg+ItEFr9XS6wmusHre0qrR36TKOuJZ2yToBssvHL7aVYr
ieae+7g0SLIHbGmJeejwh0SVQnu021V7wDC063jxl0Qrv94rjNDpAf1PndW3
tZEo+E7bdn2jHqC8w63zJ2ZjVfej92x7gN+HF5F/20mUws/vNXbtAeNSD/ys
O3B+5Iu4k949YPDu7I9SzPYB5jNJwT3A7nNzuFon1r95bNCu2B7A5RqlBWNe
LPeHPZ3SA7LW2i/+jdn374oHGa96wNd4R0K1i0QtGeeWWxf2gKeikYqnMW90
z30p8q0HLF6y8ekTzLXUZtvzzT0g8HlRdiNm53Ak+benBxxfUOlMYZ6RN/pg
PtoDOq8PfFzaTaKYjLKT+UK94MDbqtwNmFfqmi1YyeoFthxl622YC0uqymIV
esHNZ8/v7Ma8z9LSS0StFzQvBB67MPP+NCw7v6EXSN3L4xth9nM9WPfHuBfE
9jIl12GWm/rlZ27VC3Yf0Sydj/l5sN3afLteMLdcZ8EYtsdoXmer6plekH9V
h1753/1SnMNiL/eCQ3sORt3F7KbJ2yQS0gsqL/14cxizWOEZrltsL1iXTp6R
w5ywk7j3J6UXaAyIFH/B/lrX7Glq/qoX/H5/OtMTc4Xz5Gjex17g/D1efT5m
21Gfx6pfe8HTPWzj1zgeo/6UZWxTL9CMPkQYYg5lBdBEenqBvbaM9jccT8VE
sZduI71gQKpLYhfmXblzJc2l+sCHlGJvHRz/LpPo/LxFfeBo9QlWItbL5XrZ
k6qr+kCViM3GGayntKFFZcLGfeC7smDHI6w3fd8kTzfLPvCiOkezF+uxjrFs
2R/bPhA9WpepglmgouaX590HpNZ02QVhPd9580JDNbgPjEnuvf8M610NarXe
udMHtvUvcClrIpH1Eb1Nbi/7QO5+7fL/8uVltOnoiu4+YKt17n4BzjfTpZUp
d8g+8G/OdGgizsffz3dZCtO4IPbzXrkLtbgeVuzLapXnAvMlabNzq7E+BY4u
dyy4QOC6fWVzBa53t3rkhG25QH/7QaGLuB6ELTz1+dxpLqifQ/lIlpEoT/u8
8s4gLrjGGDy8BNcTmdPXfgsVcEF75YKu1gISlfx8YHFOlQfY1rs9qrLwfRz3
j46t54GOvvR59BdYn4NScb6QB5auTr6xMZNETJHrf28e4oGa0eaGkHScvxou
Z1Nv8cD5Gju770m4/gVqhzUP84DfoVe5EpEkesUaWms/wwPj4b/p9WEkuh6f
Xt8j3g9cLpgZ3g7F9emV/KJRpX5QP+rtL7hBItdftGdS+/rBlQ01zn6+uF5q
VZUb5faDMIZVw3oXEn0rCDpdWdoP2luf9IUeJ9HDbZBl+b0fHN5Ak/rlSCKD
o2+tbXn9QPkZvOt8lEQhIfe7LykMAGZlRa+aFdb73+MiWX4DYN1Wn5lTm3B9
DRNsXbBjEPyBxa9bRbE+T84ce2E9CBbTT/mwhXH9Mp0KNTw2CKK3x0ZuFhBI
lzbe6HptEJSYVWdcHieQvufg2eJ3g2CrUuvCxB4Cbbf5/fCU8hB4dO5P94XP
BDLb2FJKrR0C4/F9ZzWLCbRTrol3Z8sQ2KsocqujgEC7a+t10cEhEJ54NlIz
m0D7jL9WcyKHgN6ViD2eKQSyV88XFEwPgaSKFvLhFQI5MnJVrBjDQIFpMdJ5
CfcTPe/MeuWGgc3O8z+UPAnknPz6rvS6YeCeJrM35BSBXGWfaji7DAOrjN0l
tAMEOkuk7Zv2Ggbkv2v2c60IdK469XJUwDB4fyVEnLOLQO4hyWX5D4cB94NY
BMOIQB7HHw7seT4MWCenvKa2EMjTMEGmO28YBIkXX+nSI9DFmXu2rB/D4KzE
kFCqBoEuNccGpnYMA94eIsR7FYEu59x+tpE/DCJUhEy2qxDI53Z0bfXsMFDl
eG1mLyXQ1txt069F+SD7y6N9+ksIhNJMI3wl+eDm9eB+c8ww1kRpG4cPkp7/
6TmJuSjAOFtang88VWxMb2M2cDfa9luRD2ye3mF8wfzJ3rAlTZUPGB0zayXw
/oZ7DM6c1+ADUUdu7iHMJVsgTV+HD+peRTzOxmysDm6L6fOBiJXQ8CJFAn2W
37riuyEftFbrxEdiNmVsyXuwgw+2FtNSWUoEKpvYbO5swQcxf+UkEjBv69n0
V/MAHxxkzq3WVsb+r28YCD7KB0WGL6KqMQcWnZ3648QHPC9qnscyAhXHp8wL
d+MDy7Qmx9/YH23B+su6LvDBo2XrVR8tJ5DAs1Fz8xU+WJ3bk+62gkCb9zDN
uTf5IP79v8a1Kwl0WD/1EIzig5fzz/ovxf69tGrriXt3+WBvwvG2hWoEeifi
ft3kMR/wL815q6FOoLW5zbmPCvhgzkn+iSZNrLcnHmWTn/jAY5+M5+J1WB8x
cxv2fOED7u00xTPrCfTU1WB49geOR9KJPeq6BFqm9HT54WE+qLRTfr5KH/tT
ymj96zE+OLlm9/ESrAf76d9QfIYPSnKXPzkBCJT4g22TI06AuGO7n9UYEmh+
6KUYGWUC3DkiZL/YDOfPRZnkkysJkLz+URfTHOv92PMXRRoEQNoZtcK7CRS9
ta3i7GYCqA2+q5LG+pQY2UZV7iNA+7O6P5mHCaTW1i6pfIQAG/gGygM2ON+q
fOS9HQggOXovQ9eOQDfSX+qoniXAmMamUzwnAlFH5rsGBBNgwevOdd/OEGjJ
jtfeLeEE8M5Jpo664fzV3RmsdYcAVx3qu/+5E8ibfS3lbzIBMs18+vbg/Bop
7WnanE8AXWXGSs8AAvWuyTEZHcDnGzDs4x4QSPnKmeOrRwhQZLHwb+5D3I9/
U7nh+I8AYiynnI5HBKo9dbu0VpQE2+d832eVQaD8dDejF0tIsPPK1uTkdwQK
U1pt4GxBgrIq2cKR71hfbh32idYkMFd+9yHtB4FoRff9GmxIwBRdneHYTCAv
W/Eiw5Mk2CQerDXWRiDbB91bl14nQeA+FgjkE0hrXrJ+01sSVJZt4xnh/t/1
2AEbVj4Joq0SPK/j/j/trZSvaREJTHTTL31ZSCJ5qysfsr+RoH4G1Lgpk2hO
5OFN0d0kCN+s+2eZNu7nxOfpmc0fASflVqTJ4v7dZ+bm+oLLI6Dnb75PH+6H
qz2d7lz2HwGvWOvN7uPnh+Kg/pheyAjI+3is3Qr3w6WtwznvYkdAcMKHrW2I
RJJo/6aXr0bAu/DLNxxxv/jQX8kgpWcEaMqnvZumj6BisbzdIVajoCFwr8f6
cyOILt13cp/aGHDJVNq0Y+8oGg+2MUnSHANrnol+2Xt4FPUIahV5umNgsg7E
OjmMorKBvJ/XjMbACove4phzoyio4pZJps0YWDddcF4jbBSJ+a1VEo4cA16L
79ntLcM8fKHp5cgYmLre6jdv6xgSrRLdJvFxHIxNLrkUs3EcTVe/cI05PwkW
lV/N+HRtEnUfyFq4ZMkU+CWvvmBX5RQyCDl7puLFNNi5flbCvG4Gyb/5eyAi
exo8Ay6uiS0zaPSXheG+D9NAEI7HtY4ZlLZ2/fy2imlwohSUnhuZQZI/J4om
OqfBtT3jsbqys6hxub+sqvwMqFv39Nv9fbPodMntDzeCZsBHr7EMldpZZDw4
J21n+Aw4ku8+/eDnLFoy/0KU9J0ZYO6eKivxdxbr7eDxxEczwHDnhH7t4CzS
lVnMelcwA8Yq6JUjTAGiOaQ5dpEz4L7pZECokQDFCnIZRnazQOyNoNb4hQBJ
qn4+G3t8Fuj2jQTIvxWgwD3f63tPz4LEck2TnlwBck/mJoZdmgXLM1Tu25UK
0G5D+XWN0bOgK0pG5meLAIkF+Rw+WToLZKPFL34WpdCVrGD0oXIW8O+PeRNM
Co023laR+j4LJrfrKMqwKdSh+nzoTessOJM7PKUpTyH05ff1mfFZ8Dl54YmO
NRS6NHdrZuQqAYiLC5Gl7aXQsI4Zu2OtANy7pR1z+gCFnG2tvbR1BaBNyMK0
8giF9r08C5oNBaDOWnfS/hiFtCyT6pVtBEBgoiJLeFIowztTz8tRAFjPNjaO
XKKQYsr7xHIXAbDI7lzM9aWQ1EjNCVcvAbiiEd/7LJBCvDu0mXcRAmAr/pp1
8zaFHD5KOojHCsDbQwUZi+9RqKl7QdnhBwJwy+vYktR4CpXpakVR6QIgtmvF
7qBHFEppclDZUSwADPrZqMQsCi0UOnvzQbkA/Kpe/afwNYWiVl0eGqwSgDtC
xKnv2RS6ejkmN6YFf38fOf4ln0JHFErMf48IwEEP199iZdieMwT5bkoA/rCE
nPoqsH/Q0vuRQhSgeQ0Mvv9KobuOvt2GLArMKM35qPidQsuzn91SkKOAmO7h
prx6CmWLNmuNK1BAesAuDTZSqC5D5+pTNQoYOyXNnf8L32/KSSVAiwIf5aL9
nVspxN8ZU2mjR4EVu9OPPv6L/TM8JMc2pUClOyHe3UkhM52MlxccKFAs1ucY
1E+h5qDG/RYueD+/2J1gkEIuTXNmVp2jwK1185d2D1EoyMdhe6svBRy951tN
EBSaVxU5lBNAgbNGhXFOIxRKXVJ4JyqUAq/3hccVjFLoU7F8u1EcBXY+2hmn
PUEhS86O4MVJFLAvpQfunaRQ27GLayaeUGBc5CbN7h+FzuU8qa99TgGZPB3R
A1MUEtAbvJ+9pcBdPXbo5mkKhR8SVgzMp0A9IzdYcoZCCpmaZUeLKcASOz3x
BXPmjK3rhgrsP3uxeo9ZCm3aHS4jXYPPv0+fxxRQ6EvSh1zeDwrcswzPDcN8
kODalv6mQBb7YN405h7DBaIPOylgy63kHKAo5HXHNPMij8L990DpQ8xzejwt
LQkKjKw9XlmHOWbD4wm1SXwfRqDyCGalm98T51AUcPLY9I3CfHCQUhoWpsHm
tCXlk5gV5eaPHRGjQaHtpzl/MPdu1aioYNCgx1Hq9UvMWSdMHujMpcE7a2xT
z2C+EGVzNoVNg+7CLwfmY96a52HAkqXBLQ0F4VnYXtGOUFnf+TR4v2UsVAvz
N2ZKb588Db6ac7ovGd//zvq8/P1LaDDtYM2zGewfG5va8E9KNDhn08WfxpiX
3ei1X7ucBsXjDnh6Y//yXgjWJ6ykQSQiGhKP/f+mcR6doU6Dx7LeLMzA8blM
qbd4raVBbwstrRQcP4OVxi861tFgwr/BxhAc31pv970FG2kw7+4vYtEYheJS
bq5YtYUGY7z6Lldgfdh9Tf4XC2mwdENfngNJoSGFmqRz22jwSGx/8OFhCuWY
9Lj/NqNB2gOPtflYf1fOzprs2E2DNWjko9gAhSSLVg8o76fBr/ES5c59uP7c
t6y4dpAGZzdP+AX0UOi9x8XU30doUFWnkhHRRSFH1RKbu440ePWdXalrG16P
OFzFcKPBeEWlRKufFApz8Xvq7EGDjZxnoX8b8PcN026UXKDB5zuvfT1ch88b
J7ZcuUKDBvmh0QpVeP3ozSx+KA0+m/d3d00xhfQ2vAzdFUGDwwlBI7WFFJor
/cP5WTS+v0FIaPEHCuWWKi49FkeDD2OEe869w+vquZE/n9DgjpycYpEMvD7V
41ZYhP23eMtFhVAKRTRI7lpUSoORLoiaH0Qhp6x1qy6V06DsE/0xkes4fx2v
tmtV0yBv0Wj4C2+8/mWe1ZNfNMiV2b/HzAWvxxmvDxunwZfO0nuKDSnUdf4U
i/uPBm8UtNBqt1Aob2dUv8ksDX5Jcq2s1aPQMerXY0pECE66l8o81aBQvrOH
rIe0EBTnWfu8X0ih4zopY4fUhaDfZ4k6p0EBCo2Yx7qyVggG5MgazekToKze
kJXJ64SgzNH38+M7BGj8/rkjPXpC8HpAgXHaTwEKEegXu5sIwfbZefJGxQL0
rPxn2C1bIXhZ7zj3UYwADR2aq/IxSgjmP1+3K1RDgC5evWSlOCYEtyZa7z6z
ZxatHPCVDJ4Ugns/KZw/tW0WNR3yLxucFoJ1j0t77cEs0tMJ3fRBWBh2PLVW
2bR2Fk32P1C2ZgvDOy4/FiVLzaLLhxB5a7UwvOSkc3/ntxl0VVvs9oSDMNyR
beecZjSDbvBu11dXC0PpW9sXr1sxjczVWBmS8SLQ9fUZ/p3pSRT+QrfI3GEO
TAoMu53UNo4q9z6e8dwoCu0PrbSYVzqK3tzoaHmgLwrNSm72fywYRfHvlfI+
AVG4KCx99+l3o+jUomQvtqkojJDLi2xIG0WMzoShTCtRGHiUNdF+cxRtd7/b
1nFaFBofoWnyLUbR56ibpRYPRWHPiSXWCztH0PNPFSkXH4nCm1TfbtffI+jO
KN3/YaooNGrqXvv5xwg6djBoy8AzUWjt/rc6pGIEzVEMyAl+Lwr5Bk3XDmaN
IMOXvhmFtaJQRfdmupLPCCqqOhemLiIGF9KLmuIXjiBtWShxT0wM/uU/79rK
GUEZh9mhQkwx+Hrox4Z+yREU2fsquJEtBherN7fb0EaQrRB53W+JGKwsarnx
pJdEM9qe3g0bxaCuM5/Z+J5Ebj7Gk1u3iEGDyNQekTck6iqWvfgUisGid4Vo
03MSfd39zvPqNjF4I4d2rySZRPEu4+dW7heDcyQOyBiFkmhjwiVnXzcxeL37
O1fYjkTPO7Z393iIwSAH45rPuH9VXLXwmOVFMShuYOAYs49E4jl5DiuuisG+
8rwP281I1FQzZVN7SwzKglvOq3VJdEHkyl6VdDHY7d5f9p1Fojen/OG3Vrwe
IezNrSSQtqN9xYp2MajVf2aveDmBcg4BC/8uMbitXf2dVgmB8rbP2un2i8Gl
HnGaqR/w/LrC+1rypBishxRf/AWBqjrcCj05dHhTd29mUzSez1r2mNbI0WH4
1LbaxxF4fviuUb1Kng4zjsrMeN8iUEPRQOsfRTpMOXn4xrYbBGp56DK7XYMO
1xi4r3DxJlDfYXv9xTvosNXAOe4znn9OWYHSi+Z0mMc+f9LYgUADO5aY1+2h
w+WqnOfVtgQa1vt9JNiaDrNfJiSK4vlqXO6gD+FEh8uiG2pnLfB8KbVBxPwE
HR51sapuwvPZP1G5W2mn6HB98K+TCM9vM6P18UfO06FLuVPky+0EEqnfk//5