-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhelpers.py
223 lines (179 loc) · 9.17 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import json
import numpy as np
import pandas as pd
from scipy.stats import wasserstein_distance
PEW_SURVEY_LIST = [26, 27, 29, 32, 34, 36, 41, 42, 43, 45, 49, 50, 54, 82, 92]
DEMOGRAPHIC_ATTRIBUTES = ['Overall',
'CREGION',
'AGE',
'SEX',
'EDUCATION',
'CITIZEN',
'MARITAL',
'RELIG',
'RELIGATTEND',
'POLPARTY',
'INCOME',
'POLIDEOLOGY',
'RACE']
MODEL_NAMES = {'human max': 'human (worst)',
'human mean': 'human (avg)',
'random': 'random',
'ai21_j1-grande': 'j1-grande',
'ai21_j1-jumbo': 'j1-jumbo',
'ai21_j1-grande-v2-beta': 'j1-grande-v2-beta',
'openai_ada': 'ada',
'openai_davinci': 'davinci',
'openai_text-ada-001': 'text-ada-001',
'openai_text-davinci-001': 'text-davinci-001',
'openai_text-davinci-002': 'text-davinci-002',
'openai_text-davinci-003': 'text-davinci-003',
}
MODEL_ORDER = {k: ki for ki, k in enumerate(MODEL_NAMES.keys())}
def get_probabilities(lps, references, mapping):
min_prob = np.exp(np.min(list(lps.values())))
remaining_prob = max(0, 1 - sum([np.exp(v) for v in lps.values()]))
dist, misses = [], []
for ref in references:
prefix = mapping[ref]
values = [lps[key] for key in [f" {prefix}", prefix] if key in lps]
misses.append(len(values) == 0)
dist.append(np.max(values) if len(values) else None)
Nmisses = sum(misses)
if Nmisses > 0:
miss_value = np.log(min(min_prob, remaining_prob / Nmisses))
dist = [d if d is not None else miss_value for d in dist]
probs_unnorm = np.array([np.exp(v) for v in dist])
res = {'logprobs': dist,
'probs_unnorm': probs_unnorm,
'probs_norm': probs_unnorm / np.sum(probs_unnorm),
'misses': misses}
return res
def extract_model_opinions(result_instance, context_type, info_df):
row = {}
input_id = result_instance['instance']['id']
question_raw = result_instance['instance']['input']['text']
references = [r['output']['text'] for r in result_instance['instance']['references']]
mapping = result_instance['output_mapping']
if context_type not in ['steer-portray', 'steer-bio']:
context = result_instance['request']['prompt'].split(f"Question: {question_raw}")[0].strip()
else:
context = question_raw.split('Question:')[0].strip() + '\n'
question_raw = question_raw.replace(context, "").strip().replace('Question: ', '')
question = question_raw + f" [{'/'.join(references)}]"
top_k_logprobs = result_instance['result']['completions'][0]['tokens'][0]['top_logprobs']
for k, v in zip(['input_id', 'question_raw', 'question', 'references',
'context', 'mapping', 'top_k_logprobs'],
[input_id, question_raw, question, references, context, mapping, top_k_logprobs]):
row[k] = v
## Get probability distribution
info_loc = np.where(np.logical_and(info_df['question'] == question_raw,
[set(r) == set(references) for r in info_df['references']]))[0]
assert len(info_loc) == 1
info = info_df.iloc[info_loc]
ordinal = info['option_ordinal'].values[0]
ordinal_refs = info['references'].values[0][:len(ordinal)]
refusal_refs = info['references'].values[0][len(ordinal):]
dist_info = get_probabilities(top_k_logprobs, info['references'].values[0], {v: k for k, v in mapping.items()})
dist_info['D_M'] = dist_info['probs_unnorm'][:len(ordinal)] / np.sum(dist_info['probs_unnorm'][:len(ordinal)])
dist_info['R_M'] = np.sum(dist_info['probs_norm'][len(ordinal):])
dist_info['ordinal'] = ordinal
dist_info['ordinal_refs'] = ordinal_refs
dist_info['refusal_refs'] = refusal_refs
dist_info['qkey'] = info['key'].values[0]
row.update(dist_info)
return row
def extract_human_opinions(hdf, model_df, md_df, demographic='Overall', wave=None):
assert wave is not None
question_keys = list(set(model_df['qkey']))
weight_key = [w for w in hdf.columns if w == f'WEIGHT_W{wave}']
assert len(weight_key) == 1
weight_key = weight_key[0]
res = {'qkey': [], 'attribute': [], 'group': [], 'D_H': [], 'R_H': []}
for qkey in question_keys:
col_names = [qkey, demographic] if demographic != 'Overall' else [qkey]
cdf = hdf[[weight_key] + col_names]
cdf = cdf[[type(v) == str for v in cdf[qkey]]]
cdf = cdf.groupby(col_names, as_index=False).agg({weight_key: sum})
if demographic == 'Overall':
dist_all = {'Overall': {k: v for k, v in zip(cdf[qkey], cdf[weight_key])}}
else:
options = md_df[md_df['key'] == demographic]['options'].values[0]
def chain(row):
dist = {k: v for k, v in zip(row[qkey], row[weight_key])}
row['dist'] = dist
return row
cdf = cdf[cdf[demographic].isin(options)]
cdf = cdf.groupby([demographic], as_index=False).agg(list).apply(chain, axis=1)
dist_all = {k: v for k, v in zip(cdf[demographic], cdf['dist'])}
vdf = model_df[model_df['qkey'] == qkey][['ordinal_refs', 'refusal_refs', 'ordinal']].iloc[:1]
for group_name, dist in dist_all.items():
opinion_dist = np.array([dist[v] if v in dist else 0 for v in vdf['ordinal_refs'].values[0]])
if np.sum(opinion_dist) == 0: continue
opinion_dist /= np.sum(opinion_dist)
refusal_prob = np.sum([dist[v] if v in dist else 0 for v in vdf['refusal_refs'].values[0]])
refusal_prob /= np.sum(list(dist.values()))
for kk, vv in zip(['qkey', 'attribute', 'group', 'D_H', 'R_H'],
[qkey, demographic, group_name, opinion_dist, refusal_prob]):
res[kk].append(vv)
return pd.DataFrame(res)
def get_max_wd(ordered_ref_weights):
d0, d1 = np.zeros(len(ordered_ref_weights)), np.zeros(len(ordered_ref_weights))
d0[np.argmax(ordered_ref_weights)] = 1
d1[np.argmin(ordered_ref_weights)] = 1
max_wd = wasserstein_distance(ordered_ref_weights, ordered_ref_weights, d0, d1)
return max_wd
def get_model_opinions(result_dir, result_files, info_df):
model_df = []
for f in result_files:
context_type = f.split('context=')[1].split(',')[0]
model_name = f.split('model=')[1].split(',')[0]
print(f)
print(model_name, context_type)
results_json = json.load(open(os.path.join(result_dir, f, 'scenario_state.json'), 'rb'))['request_states']
mdf = pd.DataFrame([extract_model_opinions(r, context_type, info_df) for r in results_json])
mdf['results_path'] = f
mdf['context_type'] = context_type
mdf['model_name'] = MODEL_NAMES[model_name]
mdf['model_order'] = MODEL_ORDER[model_name]
model_df.append(mdf)
print('-' * 100)
model_df = pd.concat(model_df)
return model_df
def get_steering_group(steer_type, steer_df, contexts):
steer_dict = {}
for context in contexts:
if steer_type == 'steer-qa':
question = context.split('\n')[0].replace('Question: ', '')
answer_dict = context.split('\n')[1:-1]
answer_dict = {l.split('. ')[0]: l.split('. ')[1] for l in answer_dict}
answer = answer_dict[context.split('Answer: ')[1]]
assert question in steer_df['question'].values
assert answer in steer_df[steer_df['question'] == question]['correct'].values
rel = steer_df[np.logical_and(steer_df['question'] == question,
steer_df['correct'] == answer)]
else:
rel = steer_df[steer_df['question'] == context]
assert len(rel) == 1
steer_dict[context] = {'attribute': rel['md'].values[0],
'group': rel['subgroup'].values[0]}
return steer_dict
VIS_STYLES = [dict(selector="th", props=[('width', '90px'), ("font-size", "95%"),
('border-left', '1px solid black'),
('border-bottom', '1px solid black'),
('border-right', '1px solid black'),
('border-top', '1px solid black')]),
dict(selector="td", props=[('text-align', 'center'),
('border-left', '1px solid black'),
('border-bottom', '1px solid black'),
('border-right', '1px solid black'),
('border-top', '1px solid black')]),
dict(selector="th.row_heading", props=[('text-align', 'center'), ("font-size", "100%")]),
dict(selector="th.col_heading",
props=[('text-align', 'center'),
('width', '100px'),
('vertical-align', 'top'),
("transform", "translate(0%,10%)"),
("font-size", "70%")
])]