forked from APEXCalculus/APEXCalculus_Source
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08_Series.tex
591 lines (533 loc) · 33.6 KB
/
08_Series.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
\section{Infinite Series}\label{sec:series}
Given the sequence $\{a_n\} = \{1/2^n\} = 1/2,\ 1/4,\ 1/8,\ \dotsc$, consider the following sums:\vspace{-.5\baselineskip}
\[
\begin{array}{ c c c c c }
a_1 &=& 1/2 &=& 1/2\\
a_1+a_2 &=& 1/2+1/4 &=& 3/4\\
a_1+a_2+a_3 &=& 1/2+1/4+1/8 &=& 7/8\\
a_1+a_2+a_3+a_4 &=& 1/2+1/4+1/8+1/16 &=& 15/16
\end{array}
\]
Later, we will be able to show that\vspace{-.5\baselineskip}
\[a_1+a_2+a_3+\dotsb+a_n = \frac{2^n-1}{2^n} = 1-\frac{1}{2^n}.\]
Let $S_n$ be the sum of the first $n$ terms of the sequence $\{1/2^n\}$. From the above, we see that $S_1=1/2$, $S_2 = 3/4$, and that $S_n = 1-1/2^n$.
Now consider the following limit: $\ds \lim_{n\to\infty}S_n = \lim_{n\to\infty}\bigl(1-1/2^n\bigr) = 1$. This limit can be interpreted as saying something amazing: \emph{the sum of \emph{all} the terms of the sequence $\{1/2^n\}$ is 1.}
This example illustrates some interesting concepts that we explore in this section. We begin this exploration with some definitions.
{\tcbset{grow to right by=5em}
\begin{definition}[Infinite Series, $n^\text{th}$ Partial Sums, Convergence, Divergence]\label{def:series}
Let $\{a_n\}$ be a sequence.
\index{series!definition}\index{series!partial sums}\index{series!convergent}\index{series!divergent}\index{convergence!of series}\index{divergence!of series}
\begin{enumerate}
\item The sum $\ds \sum_{n=1}^\infty a_n$ is an \textbf{infinite series} (or, simply \textbf{series}).
\item Let $\ds S_n = \sum_{i=1}^n a_i$\,; the sequence $\{S_n\}$ is the sequence of \textbf{$n^\text{th}$ partial sums} of $\{a_n\}$.\vspace{-.5\baselineskip}
\item If the sequence $\{S_n\}$ converges to $L$, we say the series $\ds \sum_{n=1}^\infty a_n$ \textbf{converges} to $L$, and we write $\ds \sum_{n=1}^\infty a_n = L$.\vspace{-.5\baselineskip}
\item If the sequence $\{S_n\}$ diverges, the series $\ds \sum_{n=1}^\infty a_n$ \textbf{diverges}.
\end{enumerate}
\end{definition}}
Using our new terminology, we can state that the series $\ds \sum_{n=1}^\infty 1/2^n$\vspace{-.5\baselineskip} converges, and $\ds \sum_{n=1}^\infty 1/2^n = 1.$
\youtubeVideo{cyoiIBs7kIg}{Finding a Formula for a Partial Sum of a Telescoping Series}
We will explore a variety of series in this section. We start with two series that diverge, showing how we might discern divergence.
\begin{example}[Showing series diverge]\label{ex_series1}
\mbox{}\\[-2\baselineskip]\parbox[t]{\linewidth}{%
\begin{enumerate}
\item Let $\{a_n\} = \{n^2\}$. Show $\ds \sum_{n=1}^\infty a_n$ diverges.
\item Let $\{b_n\} = \{(-1)^{n+1}\}$. Show $\ds \sum_{n=1}^\infty b_n$ diverges.
\end{enumerate}}\vspace{0pt}
\solution
\begin{enumerate}
\item Consider $S_n$, the $n^\text{th}$ partial sum.
%
\mtable{Scatter plots relating to the series of \autoref{ex_series1} part 1.}{fig:series1a}{\begin{tikzpicture}
\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,
xmin=-1,xmax=11,ymin=-10]%ymax=2.1,%
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=1:10,samples=10] {x^2};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10] {x*(x+1)*(2*x+1)/6};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-25pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}}
%
\begin{align*}
S_n &= a_1+a_2+a_3+\dotsb+a_n \\
&= 1^2+2^2+3^2\dotsb+ n^2 \\
&= \frac{n(n+1)(2n+1)}{6}. \qquad\text{by \autoref{thm:summation}}
\end{align*}
Since $\ds \lim_{n\to\infty}S_n = \infty$, we conclude that the series $\ds \sum_{n=1}^\infty n^2$ diverges. It is instructive to write $\ds \sum_{n=1}^\infty n^2=\infty$ for this tells us \emph{how} the series diverges: it grows without bound.
A scatter plot of the sequences $\{a_n\}$ and $\{S_n\}$ is given in \autoref{fig:series1a}. The terms of $\{a_n\}$ are growing, so the terms of the partial sums $\{S_n\}$ are growing even faster, illustrating that the series diverges.
\item The sequence $\{b_n\}$ starts with $1, -1, 1, -1, \dotsc$. Consider some of the partial sums $S_n$ of $\{b_n\}$:
\begin{align*}
S_1 &= 1\\
S_2 &= 0\\
S_3 &= 1\\
S_4 &= 0
\end{align*}
This pattern repeats; we find that
$S_n = \begin{cases}
1 & n\ \text{ is odd}\\
0 & n\ \text{ is even.}
\end{cases}$ \smallskip
As $\{S_n\}$ oscillates, repeating $1, 0, 1, 0, \dotsc$, we conclude that $\ds\lim_{n\to\infty}S_n$ does not exist, hence $\ds\sum_{n=1}^\infty (-1)^{n+1}$ diverges.
\mtable{Scatter plots relating to the series of \autoref{ex_series1} part 2.}{fig:series1b}{\begin{tikzpicture}
\begin{axis}[width=\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,
ymin=-1.1,ymax=1.1,xmin=-1,xmax=11]
\addplot [only marks,draw={\colorone},mark size={2.5pt},domain=1:10,samples=10]
{-(-1)^x};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]
{(1-(-1)^x)/2};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-15pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $b_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}}
A scatter plot of the sequence $\{b_n\}$ and the partial sums $\{S_n\}$ is given in \autoref{fig:series1b}. When $n$ is odd, $b_n = S_n$ so the marks for $b_n$ are drawn oversized to show they coincide.
\end{enumerate}
\end{example}
While it is important to recognize when a series diverges, we are generally more interested in the series that converge. In this section we will demonstrate a few general techniques for determining convergence; later sections will delve deeper into this topic.
\subsection{Geometric Series}
One important type of series is a \emph{geometric series}.
\begin{definition}[Geometric Series]\label{def:geom_series}
A \textbf{geometric series} is a series of the form
\[\sum_{n=0}^\infty ar^n = a+ar+ar^2+ar^3+\dotsb+ar^n+\dotsb\]
Note that the index starts at $n=0$. If the index starts at $n=1$ we have $\ds \sum_{n=1}^\infty ar^{n-1}$.%
\index{series!geometric}\index{geometric series}
\end{definition}
We started this section with a geometric series, although we dropped the first term of $1$. One reason geometric series are important is that they have nice convergence properties.
\begin{theorem}[Convergence of Geometric Series]\label{thm:geom_series}
Consider the geometric series $\ds \sum_{n=0}^\infty ar^n$ where $a\neq0$.\vspace{-.5\baselineskip}
\index{series!geometric}\index{geometric series}\index{convergence!of geometric series}\index{divergence!of geometric series}
\begin{enumerate}
\item If $r\neq1$, the $n^\text{th}$ partial sum is: $\ds S_n = \sum_{k=0}^{n-1}ar^k=\frac{a(1-r\,^n)}{1-r}$.
\item The series converges if, and only if, $\abs r<1$. When $\abs r<1$,
\[\sum_{n=0}^\infty ar^n = \frac{a}{1-r}.\]
\end{enumerate}
\end{theorem}
\begin{proof}
If $r=1$, then $S_n=a+a+a+\dotsb+a=na$. Since $\ds\lim_{n\to \infty} S_n=\pm \infty$, the geometric series diverges.\\
If $r\neq 1$, we have
\[S_n=a+ar+ar^2+\dotsb+ar^{n-1}.\]
Multiply each term by $r$ and we have
\[rS_n=ar+ar^2+ar^3\dotsb+ar^n.\]
Subtract these two equations and solve for $S_n$.
\begin{align*}
S_n-rS_n &=a-ar^n \\
S_n &=\frac{a(1-r^n)}{1-r}\\
\end{align*}
From \autoref{thm:geom_seq}, we know that if $-1<r<1$, then $\ds \lim_{n\to \infty} r^n=0$ so
\[
\lim_{n\to \infty} S_n=\lim_{n\to \infty}=\frac{a(1-r^n)}{1-r}
=\frac{a}{1-r}- \frac{a}{1-r}\lim_{n\to \infty}r^n=\frac{a}{1-r}.
\]
So when $\abs r<1$ the geometric series converges and its sum is $\ds \frac{a}{1-r}$.
If either $r\leq -1$ or $r>1$, the sequence $\{r^n\}$ is divergent by \autoref{thm:geom_seq}. Thus $\ds \lim_{n\to \infty} S_n$ does not exist, so the geometric series diverges if $r\leq -1$ or \mbox{$r>1$.} % prevent a line break
\end{proof}
According to \autoref{thm:geom_series}, the series
\[
\ds\sum_{n=0}^\infty \frac{1}{2^n}
=\sum_{n=0}^\infty \left(\frac 12\right)^n= 1+\frac12+\frac14+\dotsb
\]
converges as $r=1/2$, and $\ds \sum_{n=0}^\infty \frac{1}{2^n} = \frac{1}{1-1/2} = 2.$ This concurs with our introductory example; while there we got a sum of 1, we skipped the first term of 1.
\mtable{Scatter plots relating to the series in \autoref{ex_series2}.}{fig:series2}{%
\begin{tikzpicture}
\begin{axis}[width=\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,xtick={2,4,6,8,10},
ymin=-.5,ymax=2.5,xmin=-1,xmax=11]
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=2:10,samples=9] {(.75)^x};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=2:10,samples=9]
{2.25-3*(.75)^x};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-10pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}
\smallskip\\(a)\bigskip\\
\begin{tikzpicture}
\begin{axis}[width=\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,xtick={2,4,6,8,10},
ymin=-1.1,ymax=1.1,xmin=-1,xmax=11]
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=0:10,samples=11]
{(-.5)^(x)};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=0:10,samples=11]
{(2+(-.5)^(x))/3};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,15pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}
\smallskip\\(b)\bigskip\\
\begin{tikzpicture}
\begin{axis}[width=\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,
xmin=-1,xmax=7,ymin=-50]%ymax=1.1,%
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=0:6,samples=7] {3^(x)};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=0:6,samples=7] {(3^(x+1)-1)/2};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-20pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}
\smallskip\\(c)}
\begin{example}[Exploring geometric series]\label{ex_series2}
Check the convergence of the following series. If the series converges, find its sum.
\[
\text{1. }\sum_{n=2}^\infty \left(\frac34\right)^n\qquad
\text{2. }\sum_{n=0}^\infty \left(\frac{-1}{2}\right)^n\qquad
\text{3. }\sum_{n=0}^\infty 3^n
\]
\solution
\begin{enumerate}
\item Since $r=3/4<1$, this series converges. By \autoref{thm:geom_series}, we have that
\[\sum_{n=0}^\infty \left(\frac34\right)^n = \frac{1}{1-3/4} = 4.\]
However, note the subscript of the summation in the given series: we are to start with $n=2$. Therefore we subtract off the first two terms, giving:
\[\sum_{n=2}^\infty \left(\frac34\right)^n = 4 - 1 - \frac34 = \frac94.\]
This is illustrated in \autoref{fig:series2}(a).
\item Since $\abs r = 1/2 < 1$, this series converges, and by \autoref{thm:geom_series},
\[\sum_{n=0}^\infty \left(\frac{-1}{2}\right)^n = \frac{1}{1-(-1/2)} = \frac23.\]
The partial sums of this series are plotted in \autoref{fig:series2}(b). Note how the partial sums are not purely increasing as some of the terms of the sequence $\{(-1/2)^n\}$ are negative.
\item Since $r>1$, the series diverges. (This makes ``common sense''; we expect the sum
\[1+3+9+27 + 81+243+\dotsb\]
to diverge.) This is illustrated in \autoref{fig:series2}(c).
\end{enumerate}
\end{example}
Later sections will provide tests by which we can determine whether or not a given series converges. This, in general, is much easier than determining \emph{what} a given series converges to. There are many cases, though, where the sum can be determined.
\begin{example}[Telescoping series]\label{ex_series3}
Evaluate the sum~~$\ds \sum_{n=1}^\infty \left(\frac1n-\frac1{n+1}\right)$.
\index{series!telescoping}\index{telescoping series}
\solution
It will help to write down some of the first few partial sums of this series.
\begin{align*}
S_1 &= \frac11-\frac12 & & = 1-\frac12\\
S_2 &= \left(\frac11-\frac12\right) + \left(\frac12-\frac13\right) & & = 1-\frac13\\
S_3 &= \left(\frac11-\frac12\right) + \left(\frac12-\frac13\right)+\left(\frac13-\frac14\right) & &= 1-\frac14\\
S_4 &= \left(\frac11-\frac12\right) + \left(\frac12-\frac13\right)+\left(\frac13-\frac14\right) +\left(\frac14-\frac15\right)& &= 1-\frac15
\end{align*}
%
% todo Tim don't nest tikzpictures?
\mtable{Scatter plots relating to the series of \autoref{ex_series3}.}{fig:series3}{\begin{tikzpicture}
\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,xtick={2,4,6,8,10},
ymin=-.1,ymax=1.1,xmin=-1,xmax=11]
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=1:10,samples=10]
{1/x-1/(x+1)};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10] {1-1/x};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-15pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}}%
%
Note how most of the terms in each partial sum subtract out. In general, we see that $S_n = 1-\frac{1}{n+1}$. This means that the sequence $\{S_n\}$ converges, as
\[\lim_{n\to\infty}S_n=\smallskip\lim_{n\to\infty}\left(1-\tfrac1{n+1}\right)=1,\]
and so we conclude that $\ds\sum_{n=1}^\infty \left(\tfrac1n-\tfrac1{n+1}\right) = 1$. Partial sums of the series are plotted in \autoref{fig:series3}.
\end{example}
The series in \autoref{ex_series3} is an example of a \textbf{telescoping series}. Informally, a telescoping series is one in which the partial sums reduce to just a fixed number of terms. The partial sum $S_n$ did not contain $n$ terms, but rather just two: 1 and $1/(n+1)$.\index{series!telescoping}\index{telescoping series}
When possible, seek a way to write an explicit formula for the $n^\text{th}$ partial sum $S_n$. This makes evaluating the limit $\ds\lim_{n\to\infty} S_n$ much more approachable. We do so in the next example.
%\noindent\textbf{Note on notation:} Most of the series we encounter will start with $n=1$. For ease of notation, we will often write $\sum a_n$ instead of writing $\ds\sum_{n=1}^\infty a_n$.\\
\begin{example}[Evaluating series]\label{ex_series4}
Evaluate each of the following infinite series.
\[
\text{1.}\quad\sum_{n=1}^\infty \frac{2}{n^2+2n}\qquad\qquad
\text{2.}\quad\sum_{n=1}^\infty \ln\left(\frac{n+1}{n}\right)
\]
\solution
\begin{enumerate}
\item We can decompose the fraction $2/(n^2+2n)$ as
\[\frac2{n^2+2n} = \frac1n-\frac1{n+2}.\]
(See \autoref{sec:partial_fraction}, Partial Fraction Decomposition, to recall how this is done, if necessary.)
Expressing the terms of $\{S_n\}$ is now more instructive:%
{%
\small%
\begin{align*}
S_1 &= 1-\tfrac13 &&= 1-\tfrac13\\
S_2 &= (1-\tfrac13) + (\tfrac12-\tfrac14) &&= 1+\tfrac12-\tfrac13-\tfrac14\\
S_3 &= (1-\tfrac13) + (\tfrac12-\tfrac14) + (\tfrac13-\tfrac15)
&&= 1+\tfrac12-\tfrac14-\tfrac15\\
S_4 &= (1-\tfrac13) + (\tfrac12-\tfrac14) + (\tfrac13-\tfrac15) + (\tfrac14-\tfrac16)
&&= 1+\tfrac12-\tfrac15-\tfrac16\\
S_5 &= (1-\tfrac13) + (\tfrac12-\tfrac14) + (\tfrac13-\tfrac15) + (\tfrac14-\tfrac16) + (\tfrac15-\tfrac17)\mkern-18mu
&&= 1+\tfrac12-\tfrac16-\tfrac17
\end{align*}}%
%
\mtable{Scatter plots relating to the series of \autoref{ex_series4} part 1.}{fig:series4a}{\begin{tikzpicture}
\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,xtick={2,4,6,8,10},
ymin=-.1,ymax=1.6,xmin=-1,xmax=11]
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=1:10,samples=10]
{2/(x^2+2*x)};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]
{1.5-1/(x+1)-1/(x+2)};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-17pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}}%
%
We again have a telescoping series. In each partial sum, most of the terms pair up to add to zero and we obtain the formula $\ds S_n = 1+\frac12-\frac1{n+1}-\frac1{n+2}.$ Taking limits allows us to determine the convergence of the series:
\[
\lim_{n\to\infty}S_n
= \lim_{n\to\infty} \left(1+\frac12-\frac1{n+1}-\frac1{n+2}\right) = \frac32,
\]
so $\ds\sum_{n=1}^\infty \frac1{n^2+2n} = \frac32$.
This is illustrated in \autoref{fig:series4a}.
\item We begin by writing the first few partial sums of the series:
\begin{align*}
S_1 &= \ln\left(2\right) \\
S_2 &= \ln\left(2\right)+\ln\left(\frac32\right) \\
S_3 &= \ln\left(2\right)+\ln\left(\frac32\right)+\ln\left(\frac43\right) \\
S_4 &= \ln\left(2\right)+\ln\left(\frac32\right)+\ln\left(\frac43\right)
+\ln\left(\frac54\right)
\end{align*}
At first, this does not seem helpful, but recall the logarithmic identity: $\ln x+\ln y = \ln (xy).$ Applying this to $S_4$ gives:
\[
S_4 = \ln\left(2\right)+\ln\left(\frac32\right)+\ln\left(\frac43\right)
+\ln\left(\frac54\right)
=\ln\left(\frac21\cdot\frac32\cdot\frac43\cdot\frac54\right)
=\ln\left(5\right).
\]
We must generalize this for $S_n$.
\begin{multline*}
S_n=\ln\left(2\right)+\ln\left(\frac32\right)+\dots +\ln \left(\frac{n+1}{n}\right)\\
=\ln\left(\frac21\cdot\frac32 \dots \frac{n}{n-1}\cdot \frac{n+1}{n}\right)
=\ln(n+1)
\end{multline*}
\mtable{Scatter plots relating to the series of \autoref{ex_series4} part 2.}{fig:series4b}{\begin{tikzpicture}
\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,name=myplot,axis on top,
ymin=-.5,ymax=5,xmin=-10,xmax=110]
\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=10:100,samples=10]
{ln((x+1)/x)};
\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=10:100,samples=10]
{ln(x+1)};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $n$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\node[shift={(0,-15pt)},draw] at (myplot.south) {\begin{tikzpicture}
\fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
\fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
\end{tikzpicture}};
\end{tikzpicture}}
We can conclude that $\{S_n\} = \bigl\{\ln (n+1)\bigr\}$. This sequence does not converge, as $\ds \lim_{n\to\infty}S_n=\infty$. Therefore $\ds\sum_{n=1}^\infty \ln\left(\frac{n+1}{n}\right)=\infty$; the series diverges. Note in \autoref{fig:series4b} how the sequence of partial sums grows slowly; after 100 terms, it is not yet over 5. Graphically we may be fooled into thinking the series converges, but our analysis above shows that it does not.
\end{enumerate}
\end{example}
We are learning about a new mathematical object, the series. As done before, we apply ``old'' mathematics to this new topic.
\begin{theorem}[Properties of Infinite Series]\label{thm:series_prop}
Suppose that \quad$\ds \sum_{n=1}^\infty a_n$\quad and \quad $\ds\sum_{n=1}^\infty b_n$ are convergent series, and that \quad$\ds \sum_{n=1}^\infty a_n = L$,\quad $\ds\sum_{n=1}^\infty b_n = K$, and $c$ is a constant.
\index{series!properties}\index{Sum/Difference Rule!of series}
\index{Constant Multiple Rule!of series}
\begin{enumerate}
\item Constant Multiple Rule: $\ds\sum_{n=1}^\infty c\cdot a_n = c\cdot\sum_{n=1}^\infty a_n = c\cdot L.$
\item Sum/Difference Rule: $\ds\sum_{n=1}^\infty \bigl(a_n\pm b_n\bigr) = \sum_{n=1}^\infty a_n \pm \sum_{n=1}^\infty b_n = L \pm K.$
\end{enumerate}
\end{theorem}
Before using this theorem, we will consider the harmonic series $\ds\sum_{n=1}^\infty\frac1n$.
\begin{example}[Divergence of the Harmonic Series]\label{ex_harm_series}
Show that the harmonic series $\ds \sum_{n=1}^\infty\frac1n$ diverges.
\solution
We will use a proof by contradiction here. Suppose the harmonic series converges to $S$. That is
\[S=1+\frac12+ \frac13 +\frac14+\frac15+\frac16+\frac17+\frac18+\dotsb\]
We then have
\begin{align*}
S &\geq 1+\frac12+\frac14+\frac14+\frac16+\frac16+\frac18+\frac18+\dotsb\\
&=1+\frac12+\frac12\phantom{+\frac14}+\frac13\phantom{+\frac16}
+\frac14\phantom{+\frac18}+\dotsb\\
&=\frac12+S
\end{align*}
This gives us $S\geq \frac12+S$ which can never be true, thus our assumption that the harmonic series converges must be false. Therefore, the harmonic series diverges.
\end{example}
%Before using this theorem, we provide a few ``famous'' series.
%
%{\tcbset{grow to right by=2em}}
%\begin{keyidea}[Important Series]\label{idea:famous_series}
%\begin{enumerate}
%\item \parbox{90pt}{$\ds\sum_{n=0}^\infty \frac1{n!} = e$. } (Note that the index starts with $n=0$.)
%\item $\ds\sum_{n=1}^\infty \frac1{n^2} = \frac{\pi^2}{6}$.
%\item $\ds\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$.
%\item $\ds\sum_{n=0}^\infty \frac{(-1)^{n}}{2n+1} = \frac{\pi}{4}$.
%\item \parbox{90pt}{$\ds\sum_{n=1}^\infty \frac{1}{n} $ \quad diverges.} (This is called the \emph{Harmonic Series}.)\index{Harmonic Series}
%\item \parbox{90pt}{$\ds\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = \ln 2$.} (This is called the \emph{Alternating Harmonic Series}.)\index{Alternating Harmonic Series}
%\end{enumerate}
%\end{keyidea}
%
%\begin{example}[Evaluating series]\label{ex_series5}
%Evaluate the given series.
%
%\[
%\text{1.}\quad\sum_{n=1}^\infty \frac{(-1)^{n+1}\bigl(n^2-n\bigr)}{n^3}\qquad
%\text{2.}\quad\sum_{n=1}^\infty \frac{1000}{n!}\qquad
%\text{3.}\quad\frac1{16}+\frac1{25}+\frac1{36}+\frac1{49}+\dotsb
%\]
%\solution
%\begin{enumerate}
%\item We start by using algebra to break the series apart:
%\begin{align*}
%\sum_{n=1}^\infty \frac{(-1)^{n+1}\bigl(n^2-n\bigr)}{n^3} &= \sum_{n=1}^\infty\left(\frac{(-1)^{n+1}n^2}{n^3}-\frac{(-1)^{n+1}n}{n^3}\right) \\
% &= \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}-\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^2} \\
% &= \ln(2) - \frac{\pi^2}{12} \approx -0.1293.
%\end{align*}
%
%This is illustrated in \autoref{fig:series5}(a).
%\mtable{Scatter plots relating to the series of \autoref{ex_series5} part 1.}{fig:series5a}{\begin{tikzpicture}
%\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
%axis y line=middle,axis x line=middle,name=myplot,axis on top,
%xtick={10,20,30,40,50},ymin=-.3,ymax=.3,xmin=-1,xmax=55]
%\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=5:50,samples=10]
% {((-1)^(x+1)*(x^2-x))/(x^3)};
%\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]
% coordinates {(5,-0.05528)(10,-0.1723)(15,-0.09917)(20,-0.1525)(25,-0.1105)
% (30,-0.1452)(35,-0.1156)(40,-0.1414)(45,-0.1186)(50,-0.139)};
%\end{axis}
%\node [right] at (myplot.right of origin) {\scriptsize $n$};
%\node [above] at (myplot.above origin) {\scriptsize $y$};
%\node[shift={(0,0pt)},draw] at (myplot.south) {\begin{tikzpicture}
% \fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
% \fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
%\end{tikzpicture}};
%\end{tikzpicture}}
%
%\item This looks very similar to the series that involves $e$ in \autoref{idea:famous_series}. Note, however, that the series given in this example starts with $n=1$ and not $n=0$. The first term of the series in the Key Idea is $1/0! = 1$, so we will subtract this from our result below:
%\begin{align*}
% \sum_{n=1}^\infty \frac{1000}{n!} &= 1000\cdot\sum_{n=1}^\infty \frac{1}{n!} \\
% &= 1000\cdot (e-1) \approx 1718.28.
%\end{align*}
%This is illustrated in \autoref{fig:series5}(b). The graph shows how this particular series converges very rapidly.
%\mtable{Scatter plots relating to the series of \autoref{ex_series5} part 2.}{fig:series5b}{\begin{tikzpicture}
%\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
%axis y line=middle,axis x line=middle,name=myplot,axis on top,
%ymin=-.3,ymax=2100,xmin=-1,xmax=11]
%\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=1:10,samples=10]coordinates {(1,1000.)(2,500.)(3,166.7)(4,41.67)(5,8.333)(6,1.389)(7,0.1984)(8,0.0248)(9,0.002756)(10,0.0002756)};
%\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]coordinates {(1,1000.)(2,1500.)(3,1667.)(4,1708.)(5,1717.)(6,1718.)(7,1718.)(8,1718.)(9,1718.)(10,1718.)};
%\end{axis}
%\node [right] at (myplot.right of origin) {\scriptsize $n$};
%\node [above] at (myplot.above origin) {\scriptsize $y$};
%\node[shift={(0,-25pt)},draw] at (myplot.south) {\begin{tikzpicture}
% \fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
% \fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
%\end{tikzpicture}};
%\end{tikzpicture}}
%\mtable{Scatter plots relating to the series in \autoref{ex_series5}.}{fig:series5}{%
%\begin{tikzpicture}
%\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
%axis y line=middle,axis x line=middle,name=myplot,axis on top,
%xtick={10,20,30,40,50},ymin=-.3,ymax=.3,xmin=-1,xmax=55]
%\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=5:50,samples=10] {((-1)^(x+1)*(x^2-x))/(x^3)};
%\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]coordinates {(5,-0.05528)(10,-0.1723)(15,-0.09917)(20,-0.1525)(25,-0.1105)(30,-0.1452)(35,-0.1156)(40,-0.1414)(45,-0.1186)(50,-0.139)};
%\end{axis}
%\node [right] at (myplot.right of origin) {\scriptsize $n$};
%\node [above] at (myplot.above origin) {\scriptsize $y$};
%\node[shift={(0,0pt)},draw] at (myplot.south) {\begin{tikzpicture}
% \fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
% \fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
%\end{tikzpicture}};
%\end{tikzpicture}
%\\[10pt](a)\\[15pt]
%\begin{tikzpicture}
%\begin{axis}[width=1.16\marginparwidth,tick label style={font=\scriptsize},
%axis y line=middle,axis x line=middle,name=myplot,axis on top,
%ymin=-.3,ymax=2100,xmin=-1,xmax=11]
%\addplot [only marks,draw={\colorone},mark size={1.5pt},domain=1:10,samples=10]coordinates {(1,1000.)(2,500.)(3,166.7)(4,41.67)(5,8.333)(6,1.389)(7,0.1984)(8,0.0248)(9,0.002756)(10,0.0002756)};
%\addplot [only marks,draw={\colortwo},mark size={1.5pt},domain=1:10,samples=10]coordinates {(1,1000.)(2,1500.)(3,1667.)(4,1708.)(5,1717.)(6,1718.)(7,1718.)(8,1718.)(9,1718.)(10,1718.)};
%\end{axis}
%\node [right] at (myplot.right of origin) {\scriptsize $n$};
%\node [above] at (myplot.above origin) {\scriptsize $y$};
%\node[shift={(0,-25pt)},draw] at (myplot.south) {\begin{tikzpicture}
% \fill [\colorone] (0,0) circle (1.5pt) node [right,black] {\scriptsize $a_n$};
% \fill [\colortwo] (1,0) circle (1.5pt) node [right, black] {\scriptsize $S_n$};
%\end{tikzpicture}};
%\end{tikzpicture}}
%\\[10pt](b)}
%
%\item The denominators in each term are perfect squares; we are adding $\ds \sum_{n=4}^\infty \frac{1}{n^2}$ (note we start with $n=4$, not $n=1$). This series will converge. Using the formula from \autoref{idea:famous_series}, we have the following:
%\begin{align*}
%\sum_{n=1}^\infty \frac1{n^2} &= \sum_{n=1}^3 \frac1{n^2} +\sum_{n=4}^\infty \frac1{n^2} \\
%\sum_{n=1}^\infty \frac1{n^2} - \sum_{n=1}^3 \frac1{n^2} &=\sum_{n=4}^\infty \frac1{n^2} \\
%\frac{\pi^2}{6} - \left(\frac11+\frac14+\frac19\right) &= \sum_{n=4}^\infty \frac1{n^2} \\
%\frac{\pi^2}{6} - \frac{49}{36} &= \sum_{n=4}^\infty \frac1{n^2} \\
%0.2838&\approx \sum_{n=4}^\infty \frac1{n^2}
%\end{align*}
%\end{enumerate}
%\end{example}
It may take a while before one is comfortable with this statement, whose truth lies at the heart of the study of infinite series: \emph{it is possible that the sum of an infinite list of nonzero numbers is finite.} We have seen this repeatedly in this section, yet it still may ``take some getting used to.''
As one contemplates the behavior of series, a few facts become clear.
\begin{enumerate}
\item In order to add an infinite list of nonzero numbers and get a finite result, ``most'' of those numbers must be ``very near'' 0.
\item If a series diverges, it means that the sum of an infinite list of numbers is not finite (it may approach $\pm \infty$ or it may oscillate), and:
\begin{enumerate}
\item The series will still diverge if the first term is removed.
\item The series will still diverge if the first 10 terms are removed.
\item The series will still diverge if the first $1{,}000{,}000$ terms are removed.
\item The series will still diverge if any finite number of terms from anywhere in the series are removed.
\end{enumerate}
\end{enumerate}
These concepts are very important and lie at the heart of the next two theorems.
\begin{theorem}[Convergence of Sequence]\label{thm:series_conv}
If the series $\ds \sum_{n=1}^\infty a_n$ converges, then $\ds\lim_{n\to\infty}a_n=0$.
\end{theorem}
\begin{proof}
Let $S_n=a_1+a_2+\dots+a_n$. We have
\begin{align*}
S_n&=a_1+a_2+\dots+a_{n-1}+a_n\\
S_n&=S_{n-1}+a_n\\
a_n&=S_n-S_{n-1}
\end{align*}
Since $\ds \sum_{n\to\infty}a_n$ converges, the sequence $\{ S_n\}$ converges. Let $\ds \lim_{n\to\infty} S_n=S$. As $n\to \infty$, $n-1$ also goes to $\infty$, so $\ds \lim_{n\to\infty} S_{n-1}=S$. We now have
\begin{align*}
\lim_{n\to\infty} a_n&= \lim_{n\to\infty}(S_n-S_{n-1})\\
&= \lim_{n\to\infty}S_n - \lim_{n\to\infty} S_{n-1}\\
&=S-S=0\qedhere
\end{align*}
\end{proof}
\begin{theorem}[Test for Divergence]\label{thm:series_nth_term}
If $ \ds \lim_{n\to\infty} a_n$ does not exist or $\ds \lim_{n\to\infty}a_n\neq0$, then the series $\ds \sum_{n=1}^\infty a_n$ diverges.
\end{theorem}
The Test for Divergence follows from \autoref{thm:series_conv}. If the series does not diverge, it must converge and therefore $\ds \lim_{n\to\infty}a_n=0$.
Note that the two statements in Theorems \ref{thm:series_conv} and \ref{thm:series_nth_term} are really the same. In order to converge, the terms of the sequence must approach 0; if they do not, the series will not converge.
Looking back, we can apply this theorem to the series in \autoref{ex_series1}. In that example, we had $\{a_n\} = \{n^2\}$ and $\{b_n\} = \{(-1)^{n+1}\}$.
\[\lim_{n\to\infty} a_n=\lim_{n\to\infty} n^2=\infty\]
and
\[\lim_{n\to\infty} b_n=\lim_{n\to\infty}(-1)^{n+1}\text{ which does not exist.}\]
Thus by the Test for Divergence, both series will diverge.
\textbf{Important!} This theorem \emph{does not state} that if $\ds \lim_{n\to\infty} a_n = 0$ then $\ds \sum_{n=1}^\infty a_n $ converges. The standard example of this is the Harmonic Series, as given in \autoref{ex_harm_series}. The Harmonic Sequence, $\{1/n\}$, converges to 0; the Harmonic Series, $\ds \sum_{n=1}^\infty 1/n$, diverges.
\begin{theorem}[Infinite Nature of Series]\label{thm:series_behavior}
The convergence or divergence of a series remains unchanged by the insertion or deletion of any finite number of terms. That is:
\begin{enumerate}
\item A divergent series will remain divergent with the insertion or deletion of any finite number of terms.
\item A convergent series will remain convergent with the insertion or deletion of any finite number of terms. (Of course, the \emph{sum} will likely change.)
\end{enumerate}
\end{theorem}
In other words, when we are only interested in the convergence or divergence of a series, it is safe to ignore the first few billion terms.
\begin{example}[Removing Terms from the Harmonic Series]\label{ex_trunc_harm}
Consider once more the Harmonic Series $\ds\sum_{n=1}^\infty\frac1n$\vspace{-.8\baselineskip} which diverges; that is, the partial sums $S_N=\ds\sum_{n=1}^N\frac1n$ grow (very, very slowly) without bound. One might think that by removing the ``large'' terms of the sequence that perhaps the series will converge. This is simply not the case. For instance, the sum of the first 10 million terms of the Harmonic Series is about 16.7. Removing the first 10 million terms from the Harmonic Series changes the partial sums, effectively subtracting 16.7 from the sum. However, a sequence that is growing without bound will still grow without bound when 16.7 is subtracted from it.
The equation below illustrates this. Even though we have subtracted off the first 10 million terms, this only subtracts a constant off of an expression that is still growing to infinity. Therefore, the modified series is still growing to infinity.
\begin{multline*}
\sum_{n=10,000,001}^\infty\frac1n
=\lim_{N\to\infty}\sum_{n=10,000,001}^N\frac1n
=\lim_{N\to\infty}\sum_{n=1}^N\frac1n-\sum_{n=1}^{10,000,001}\frac1n \\
=\lim_{N\to\infty}\sum_{n=1}^N\frac1n-16.7
=\infty.
\end{multline*}
\end{example}
This section introduced us to series and defined a few special types of series whose convergence properties are well known. We know when a geometric series converges or diverges. Most series that we encounter are not one of these types, but we are still interested in knowing whether or not they converge. The next three sections introduce tests that help us determine whether or not a given series converges.
\printexercises{exercises/08-02-exercises}