-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathtransformer_xl.py
560 lines (504 loc) · 21.7 KB
/
transformer_xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based Transformer XL layer."""
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import relative_attention
def _cache_memory(current_state, previous_state, memory_length, reuse_length=0):
"""Caches hidden states into memory.
Args:
current_state: `Tensor`, the current state.
previous_state: `Tensor`, the previous state.
memory_length: `int`, the number of tokens to cache.
reuse_length: `int`, the number of tokens in the current batch to be cached
and reused in the future.
Returns:
A `Tensor`, representing the cached state with stopped gradients.
"""
if memory_length is None or memory_length == 0:
return None
else:
if reuse_length > 0:
current_state = current_state[:, :reuse_length, :]
if previous_state is None:
new_mem = current_state[:, -memory_length:, :]
else:
new_mem = tf.concat(
[previous_state, current_state], 1)[:, -memory_length:, :]
return tf.stop_gradient(new_mem)
@tf_keras.utils.register_keras_serializable(package="Text")
class TransformerXLBlock(tf_keras.layers.Layer):
"""Transformer XL block.
This implements a Transformer XL block from "Transformer-XL: Attentive
Language Models Beyond a Fixed-Length Context"
(https://arxiv.org/abs/1901.02860).
This block is further extended to allow for the Transformer-XL
re-parameterization in "XLNet: Generalized Autoregressive Pretraining for
Language Understanding" (https://arxiv.org/abs/1906.08237).
Given an input stream, this block computes attention, applies dropouts and
layer norms and feeds into the FFN network.
**Note: This layer is currently experimental.
Attributes:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_attention_heads: The number of attention heads.
head_size: The dimension size of each attention head.
inner_size: The inner size for the transformer layers.
dropout_rate: Dropout rate for the output of this layer.
attention_dropout_rate: Dropout rate on attention probabilities.
two_stream: Whether or not to use `TwoStreamRelativeAttention` used in the
XLNet pretrainer. If `False`, then it will use
`MultiHeadRelativeAttention` as in Transformer XL.
norm_epsilon: Epsilon value to initialize normalization layers.
inner_activation: The activation to use for the inner
FFN layers.
kernel_initializer: Initializer for dense layer kernels.
inner_dropout: Dropout probability for the inner dropout
layer.
"""
def __init__(self,
vocab_size,
hidden_size,
num_attention_heads,
head_size,
inner_size,
dropout_rate,
attention_dropout_rate,
two_stream=False,
norm_epsilon=1e-12,
inner_activation="relu",
kernel_initializer="variance_scaling",
inner_dropout=0.0,
**kwargs):
"""Initializes TransformerXLBlock layer."""
super().__init__(**kwargs)
self._vocab_size = vocab_size
self._num_heads = num_attention_heads
self._head_size = head_size
self._hidden_size = hidden_size
self._inner_size = inner_size
self._dropout_rate = dropout_rate
self._attention_dropout_rate = attention_dropout_rate
self._inner_activation = inner_activation
self._norm_epsilon = norm_epsilon
self._kernel_initializer = kernel_initializer
self._inner_dropout = inner_dropout
self._two_stream = two_stream
if two_stream:
self._attention_layer_type = relative_attention.TwoStreamRelativeAttention
else:
self._attention_layer_type = relative_attention.MultiHeadRelativeAttention
def build(self, input_shape):
input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
input_tensor_shape = tf.TensorShape(input_tensor)
if len(input_tensor_shape.as_list()) != 3:
raise ValueError("TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width].")
batch_size, sequence_length, hidden_size = input_tensor_shape
if len(input_shape) == 2:
mask_tensor_shape = tf.TensorShape(input_shape[1])
expected_mask_tensor_shape = tf.TensorShape(
[batch_size, sequence_length, sequence_length])
if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
raise ValueError("When passing a mask tensor to TransformerXLBlock, "
"the mask tensor must be of shape [batch, "
"sequence_length, sequence_length] (here %s). Got a "
"mask tensor of shape %s." %
(expected_mask_tensor_shape, mask_tensor_shape))
if hidden_size % self._num_heads != 0:
raise ValueError(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, self._num_heads))
self._attention_layer = self._attention_layer_type(
num_heads=self._num_heads,
key_dim=self._head_size,
value_dim=self._head_size,
dropout=self._attention_dropout_rate,
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
name="rel_attn")
self._attention_dropout = tf_keras.layers.Dropout(
rate=self._attention_dropout_rate)
self._attention_layer_norm = tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32)
self._inner_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_size),
bias_axes="d",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
name="inner")
self._inner_activation_layer = tf_keras.layers.Activation(
self._inner_activation)
self._inner_dropout_layer = tf_keras.layers.Dropout(
rate=self._inner_dropout)
self._output_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, hidden_size),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer))
self._output_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm",
axis=-1,
epsilon=self._norm_epsilon)
super().build(input_shape)
def get_config(self):
config = {
"vocab_size":
self._vocab_size,
"hidden_size":
self._hidden_size,
"num_attention_heads":
self._num_heads,
"head_size":
self._head_size,
"inner_size":
self._inner_size,
"dropout_rate":
self._dropout_rate,
"attention_dropout_rate":
self._attention_dropout_rate,
"two_stream":
self._two_stream,
"norm_epsilon":
self._norm_epsilon,
"inner_activation":
self._inner_activation,
"kernel_initializer":
self._kernel_initializer,
"inner_dropout":
self._inner_dropout,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self,
content_stream,
content_attention_bias,
positional_attention_bias,
relative_position_encoding=None,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
state=None,
content_attention_mask=None,
query_stream=None,
query_attention_mask=None,
target_mapping=None):
"""Implements `call` for the Layer.
Args:
content_stream: `Tensor`, the input content stream. This is the standard
input to Transformer XL and is commonly referred to as `h` in XLNet.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
positional_attention_bias: Bias `Tensor` for position based attention of
shape `[num_heads, dim]`.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
segment_matrix: Optional `Tensor` of shape `[B, S, S + M]`. Used in XLNet,
but not in Transformer XL.
segment_encoding: Optional `Tensor` of shape `[2, num_heads, dim]`. Used
in XLNet, but not in Transformer XL.
segment_attention_bias: Optional bias `Tensor` for segment based attention
of shape `[num_heads, dim]`.
state: Optional `Tensor` of shape `[B, M, E]`, where M is the length of
the state or memory. If passed, this is also attended over as in
Transformer XL.
content_attention_mask: Optional `Tensor` representing the mask that is
added to content attention logits. If state is not None, the mask source
sequence dimension should extend M.
query_stream: Optional `Tensor`, the query stream. This is introduced in
`TwoStreamRelativeAttention`/XLNet pretrainer. This is ignored if
`two_stream` is `False`.
query_attention_mask: Optional `Tensor` representing the mask that is
added to query attention logits. If state is not None, the mask source
sequence dimension should extend M.
target_mapping: Optional `Tensor` representing the target mapping when
calculating query attention.
Returns:
A `dict` object, containing the key value pairs for `content_attention`
and (if `two_stream` is `True`) `query_attention`.
"""
if not self._two_stream and query_stream is not None:
logging.warning("`query_stream` was provided but two stream attention is "
"disabled. `query_stream` will be ignored.")
if self._two_stream:
attention_kwargs = dict(
content_stream=content_stream,
query_stream=query_stream,
query_attention_mask=query_attention_mask,
target_mapping=target_mapping,
content_attention_mask=content_attention_mask)
else:
attention_kwargs = dict(
query=content_stream,
value=content_stream,
key=content_stream,
attention_mask=content_attention_mask)
common_attention_kwargs = dict(
content_attention_bias=content_attention_bias,
relative_position_encoding=relative_position_encoding,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
state=state)
attention_kwargs.update(common_attention_kwargs)
attention_output = self._attention_layer(**attention_kwargs)
if self._two_stream:
attention_streams = attention_output
input_streams = [content_stream, query_stream]
else:
attention_streams = [attention_output]
input_streams = [content_stream]
attention_keys = ["content_attention", "query_attention"]
attention_output = {}
for attention_stream, input_stream, attention_key in zip(
attention_streams, input_streams, attention_keys):
attention_stream = self._attention_dropout(attention_stream)
attention_stream = self._attention_layer_norm(
attention_stream + input_stream)
inner_output = self._inner_dense(attention_stream)
inner_output = self._inner_activation_layer(
inner_output)
inner_output = self._inner_dropout_layer(
inner_output)
layer_output = self._output_dense(inner_output)
layer_output = self._output_dropout(layer_output)
layer_output = self._output_layer_norm(layer_output + attention_stream)
attention_output[attention_key] = layer_output
return attention_output
class TransformerXL(tf_keras.layers.Layer):
"""Transformer XL.
This layer combines multiple Transformer XL blocks from "Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context"
(https://arxiv.org/abs/1901.02860).
This layer handles the attention biases as well as memory caching and reuse
as in Transformer XL and XLNet.
Attributes:
vocab_size: The number of tokens in vocabulary.
num_layers: The number of layers.
hidden_size: The hidden size.
num_attention_heads: The number of attention heads.
head_size: The dimension size of each attention head.
inner_size: The hidden size in feed-forward layers.
dropout_rate: Dropout rate used in each Transformer XL block.
attention_dropout_rate: Dropout rate on attention probabilities.
two_stream: Whether or not to use `TwoStreamRelativeAttention` used
in the XLNet pretrainer. If `False`, then it will use
`MultiHeadRelativeAttention` as in Transformer XL.
initializer: The initializer to use for attention biases.
tie_attention_biases: Whether or not to tie biases together. If `True`, then
each Transformer XL block shares the same trainable attention bias. If
`False`, then each block has its own attention bias. This is usually set
to `True`.
memory_length: The number of tokens to cache.
reuse_length: The number of tokens in the current batch to be cached
and reused in the future.
inner_activation: The activation to use in the inner layers
for Transformer XL blocks. Typically "relu" or "gelu".
"""
def __init__(self,
vocab_size,
num_layers,
hidden_size,
num_attention_heads,
head_size,
inner_size,
dropout_rate,
attention_dropout_rate,
initializer,
two_stream=False,
tie_attention_biases=True,
memory_length=None,
reuse_length=None,
inner_activation="relu",
**kwargs):
"""Initializes TransformerXL."""
super().__init__(**kwargs)
self._vocab_size = vocab_size
self._initializer = initializer
self._num_layers = num_layers
self._hidden_size = hidden_size
self._num_attention_heads = num_attention_heads
self._head_size = head_size
self._inner_size = inner_size
self._inner_activation = inner_activation
self._dropout_rate = dropout_rate
self._attention_dropout_rate = attention_dropout_rate
self._tie_attention_biases = tie_attention_biases
self._two_stream = two_stream
self._memory_length = memory_length
self._reuse_length = reuse_length
if self._tie_attention_biases:
attention_bias_shape = [self._num_attention_heads, self._head_size]
else:
attention_bias_shape = [self._num_layers, self._num_attention_heads,
self._head_size]
self.content_attention_bias = self.add_weight(
"content_attention_bias",
shape=attention_bias_shape,
dtype=tf.float32,
initializer=tf_utils.clone_initializer(self._initializer))
self.positional_attention_bias = self.add_weight(
"positional_attention_bias",
shape=attention_bias_shape,
dtype=tf.float32,
initializer=tf_utils.clone_initializer(self._initializer))
self.segment_attention_bias = self.add_weight(
"segment_attention_bias",
shape=attention_bias_shape,
dtype=tf.float32,
initializer=tf_utils.clone_initializer(self._initializer))
self.transformer_xl_layers = []
for i in range(self._num_layers):
self.transformer_xl_layers.append(
TransformerXLBlock(
vocab_size=self._vocab_size,
hidden_size=self._head_size * self._num_attention_heads,
num_attention_heads=self._num_attention_heads,
head_size=self._head_size,
inner_size=self._inner_size,
dropout_rate=self._dropout_rate,
attention_dropout_rate=self._attention_dropout_rate,
norm_epsilon=1e-12,
inner_activation=self._inner_activation,
two_stream=self._two_stream,
kernel_initializer="variance_scaling",
name="layer_%d" % i))
self.output_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
def get_config(self):
config = {
"vocab_size":
self._vocab_size,
"num_layers":
self._num_layers,
"hidden_size":
self._hidden_size,
"num_attention_heads":
self._num_attention_heads,
"head_size":
self._head_size,
"inner_size":
self._inner_size,
"dropout_rate":
self._dropout_rate,
"attention_dropout_rate":
self._attention_dropout_rate,
"initializer":
self._initializer,
"two_stream":
self._two_stream,
"tie_attention_biases":
self._tie_attention_biases,
"memory_length":
self._memory_length,
"reuse_length":
self._reuse_length,
"inner_activation":
self._inner_activation,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self,
content_stream,
relative_position_encoding,
segment_matrix=None,
segment_embedding=None,
state=None,
content_attention_mask=None,
query_stream=None,
query_attention_mask=None,
target_mapping=None):
"""Implements call() for the layer.
Args:
content_stream: `Tensor`, the input content stream. This is the standard
input to Transformer XL and is commonly referred to as `h` in XLNet.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
segment_matrix: Optional `Tensor` of shape `[B, S, S + M]`. Used in XLNet,
but not in Transformer XL.
segment_embedding: Optional `Tensor` of shape `[2, num_heads, dim]`. Used
in XLNet, but not in Transformer XL.
state: Optional `Tensor` of shape `[B, M, E]`, where M is the length of
the state or memory. If passed, this is also attended over as in
Transformer XL.
content_attention_mask: Optional `Tensor` representing the mask that is
added to content attention logits. If state is not None, the mask source
sequence dimension should extend M.
query_stream: Optional `Tensor`, the query stream. This is introduced in
`TwoStreamRelativeAttention`/XLNet pretrainer. This is ignored if
`two_stream` is `False`.
query_attention_mask: Optional `Tensor` representing the mask that is
added to query attention logits. If state is not None, the mask source
sequence dimension should extend M.
target_mapping: Optional `Tensor` representing the target mapping when
calculating query attention.
Returns:
A tuple consisting of the attention output and the list of cached memory
states.
The attention output is `content_attention` if `two_stream` is `False`,
otherwise it is `query_attention`.
"""
new_mems = []
if state is None:
state = [None] * self._num_layers
for i in range(self._num_layers):
# cache new mems
new_mems.append(
_cache_memory(content_stream, state[i],
self._memory_length, self._reuse_length))
# segment bias
if segment_matrix is None:
segment_attention_bias = None
segment_encoding = None
else:
segment_attention_bias = (self.segment_attention_bias
if self._tie_attention_biases
else self.segment_attention_bias[i])
segment_encoding = segment_embedding[i]
content_attention_bias = (self.content_attention_bias
if self._tie_attention_biases
else self.content_attention_bias[i])
positional_attention_bias = (self.positional_attention_bias
if self._tie_attention_biases
else self.positional_attention_bias[i])
transformer_xl_layer = self.transformer_xl_layers[i]
transformer_xl_output = transformer_xl_layer(
content_stream=content_stream,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
relative_position_encoding=relative_position_encoding,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
state=state[i],
content_attention_mask=content_attention_mask,
query_attention_mask=query_attention_mask,
query_stream=query_stream,
target_mapping=target_mapping)
content_stream = transformer_xl_output["content_attention"]
if self._two_stream:
query_stream = transformer_xl_output["query_attention"]
else:
query_stream = None
if self._two_stream:
output_stream = query_stream
else:
output_stream = content_stream
return output_stream, new_mems