-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexport_pseudo_label_CC3M.py
264 lines (222 loc) · 9.86 KB
/
export_pseudo_label_CC3M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
import json
import os
import io
import argparse
import random
from pathlib import Path
from nltk.corpus import wordnet
import numpy as np
from PIL import Image
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from util.visualizer import COCOVisualizer
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco import make_coco_transforms
from models import build_model
from main import get_args_parser
from PIL import Image
import datasets.transforms as T
try:
from petrel_client.client import Client
except ImportError as E:
"petrel_client.client cannot be imported"
pass
from tqdm import tqdm
from torch.utils.data import Dataset
def pil_loader(img_str):
buff = io.BytesIO(img_str)
return Image.open(buff).convert("RGB")
class TCSLoader(object):
def __init__(self, conf_path):
self.client = Client(conf_path)
def __call__(self, fn):
try:
img_value_str = self.client.get(fn)
img = pil_loader(img_value_str)
except:
print('Read image failed ({})'.format(fn))
return None
else:
return img
class ceph_cc3m_dataset(Dataset):
def __init__(self, tcsloader, captions, categories, args):
self.loader = tcsloader
self.captions = captions
self.dataset_path = args.cc3m_path
self.categories = categories
if 'clip' in args.backbone:
MEAN = [0.48145466, 0.4578275, 0.40821073]
STD = [0.26862954, 0.26130258, 0.27577711]
else:
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
normalize = T.Compose([
T.ToRGB(),
T.ToTensor(),
T.Normalize(MEAN, STD)
])
self.transforms = T.Compose([
T.RandomResize([800], max_size=1333),
normalize,
])
def __len__(self):
return len(self.captions)
def __getitem__(self, idx):
data = json.loads(self.captions[idx])
image_path = os.path.join(self.dataset_path, data['image'].replace('.zip@', ''))
image = self.loader(image_path)
w, h = image.size
lemmas = ' '.join(data['spacy_lemmas'])
tags = [k for k in self.categories if ' ' + k + ' ' in ' ' + lemmas + ' ']
meta = dict(
file_path=image_path,
orig_size=torch.tensor([h, w]),
image_id=idx,
categories=tags,
)
image, _ = self.transforms(image, target={})
return image, meta
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only."
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, post_processors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total number of params in model: ', n_parameters)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model_ema'])
model.eval()
DETECTION_THRESHOLD = args.det_thr
captions = open(args.caption_path, 'r').readlines()
reader = TCSLoader(args.petrel_cfg)
if args.visualize:
vslzr = COCOVisualizer()
def visualize(img, orig_size, results, filter, name, idx):
mask = filter(results)
vslzr.visualize(img[0], dict(
boxes=results['boxes'][mask],
size=orig_size,
box_label=[f"{results['box_label'][i]}_{results['scores'][i].item():.3f}" for i, p in enumerate(mask) if p],
# box_label=[f"{results['box_label'][i]}" for i, p in enumerate(mask) if p],
image_id=idx,
), caption=name, savedir=os.path.join(args.output_dir, "vis"), show_in_console=False)
else:
annotations = list()
images = []
image_counts = dict()
annotation_counts = dict()
categories = open(args.noun_path, 'r').readlines()
categories = [k.split(',')[0] for k in categories]
dataset = ceph_cc3m_dataset(reader, captions, categories, args)
if args.distributed:
sampler = DistributedSampler(dataset, shuffle=False)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
dataloader_train = DataLoader(dataset,
1,
sampler=sampler,
drop_last=False,
# collate_fn=lambda x: x[0], # batch size is one
num_workers=args.num_workers)
for i, (img, meta) in tqdm(enumerate(dataloader_train)):
file_path = meta['file_path'][0]
h, w = meta['orig_size'][0].tolist()
current_categories = [k[0] for k in meta['categories']]
if len(meta['categories']) == 0:
continue
with torch.no_grad():
target_sizes = torch.tensor([img.shape[-2:] if args.visualize else [h, w]], device=device)
img = img.to(device)
used_cats = random.sample(categories, k=48 if args.num_label_sampled < 0 else args.num_label_sampled)
used_cats = list(set(used_cats + current_categories))
outputs = model(img, categories=used_cats)
_ids = [used_cats.index(cat_name) for cat_name in current_categories]
interested_scores = outputs['pred_logits'][:,:,_ids]
outputs['pred_logits'] = outputs['pred_logits'] - 999
outputs['pred_logits'][:,:,_ids] = interested_scores
results = post_processors['bbox'](outputs, target_sizes)[0]
if args.visualize:
if results['scores'].numel() == 0:
continue
results['box_label'] = [used_cats[item.item()] for item in results['labels']]
def score(results):
return results['scores'] >= DETECTION_THRESHOLD
def max_score(results):
return results['scores'] == results['scores'].max()
m = results['scores'].max().item() * 100
visualize(img, meta['orig_size'][0], results, score, f'{m:.3f}', idx=meta['image_id'].item())
else:
selected = results['scores'] >= DETECTION_THRESHOLD
labels = results['labels'][selected]
boxes = results['boxes'][selected]
boxes[:,2:] = boxes[:,2:] - boxes[:,:2]
scores = results['scores'][selected]
for label, box, confidence in zip(labels, boxes, scores):
annotation = dict(
id=-1, # index it after finished labeling
image_id=meta['image_id'].item(),
bbox=box.tolist(),
category=used_cats[label.item()],
score=confidence.item(),
)
annotations.append(annotation)
file_name = "/".join(file_path.split('/')[-2:])
image = {
'id': meta['image_id'].item(),
'file_name': file_name,
'pos_category_ids': list(set([used_cats[item.item()] for item in labels])),
'width': w,
'height': h
}
images.append(image)
print('# Images', len(images))
out = {'images': images, 'annotations': annotations}
with open(f"cc3m_{args.name}_image_info_thr{DETECTION_THRESHOLD}_rand{utils.get_rank()}.json", "w") as f:
json.dump(out, f)
if utils.is_dist_avail_and_initialized():
torch.distributed.barrier()
if utils.is_main_process():
out_all = out
for i in range(1, utils.get_world_size()):
with open(f"cc3m_{args.name}_image_info_thr{DETECTION_THRESHOLD}_rand{i}.json", "r") as f:
part_annotations = json.load(f)
out_all['annotations'].extend(part_annotations['annotations'])
out_all['images'].extend(part_annotations['images'])
for i in range(len(out_all['annotations'])):
out_all['annotations'][i]['id'] = i
with open(f"cc3m_{args.name}_image_info_thr{DETECTION_THRESHOLD}.json", "w") as f:
json.dump(out_all, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser("CORA", parents=[get_args_parser()])
parser.add_argument('--cc3m_path', type=str)
parser.add_argument('--noun_path', default='')
parser.add_argument('--caption_path', type=str)
parser.add_argument('--petrel_cfg', default='petreloss.config')
parser.add_argument('--det_thr', default=0.3, type=float)
parser.add_argument('--name', default='', type=str)
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)