-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_part_1.py
127 lines (104 loc) · 4.52 KB
/
video_part_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import face_recognition
import cv2
import numpy as np
import requests
import threading
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("chanakya.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [obama_face_encoding]
known_face_names = ["Chanakya"]
# Initialize variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
frame_c = 0
recordings = {}
# Function to handle video frame processing
def process_video_frame():
global face_locations, face_encodings, face_names, frame_c, process_this_frame
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
frame_c += 1
# Only process every other frame to save time
if process_this_frame:
# Resize and convert frame for face_recognition
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
# Detect faces
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
if len(face_distances):
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
# Make the API call when "Chanakya" is detected, in a separate thread
if name not in recordings:
# Start a new thread to make the API call asynchronously
threading.Thread(target=trigger_recording_api, args=(name,)).start()
recordings[name] = 1
for rec in list(recordings.keys()):
if rec not in face_names:
# print("HERE")
recordings[rec] += 1
# print(recordings[rec])
if recordings[rec] == 10:
recordings.pop(rec);
threading.Thread(target=trigger_stop_recording_api, args=(name,)).start()
process_this_frame = frame_c % 5 == 0
# Display results
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box and label
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
# Quit on 'q' key
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Function to trigger the API call asynchronously
def trigger_recording_api(id):
payload = {"Task": "start_recording", "id": id}
try:
response = requests.post("https://98f4-66-180-180-2.ngrok-free.app/trigger-recording", json=payload)
if response.status_code == 200:
print(f"Started recording for id: {id}.")
else:
print(f"Failed to start recording: {response.status_code}")
except Exception as e:
print(f"Error making API call: {e}")
def trigger_stop_recording_api(id):
payload = {"Task": "stop_recording", "id": id}
try:
response = requests.post("https://98f4-66-180-180-2.ngrok-free.app/trigger-recording", json=payload)
try:
data = response.json()
except requests.JSONDecodeError:
data = None
print(data)
if response.status_code == 200:
print(f"Stopping recording for id: {id}.")
else:
print(f"Failed to stop recording: {response.status_code}")
except Exception as e:
print(f"Error making API call: {e}")
# Start the video processing in a separate thread (This will run continuously until 'q' is pressed)
process_video_frame()
# Release resources
video_capture.release()
cv2.destroyAllWindows()