-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathSaxofony.cpp
177 lines (147 loc) · 5.04 KB
/
Saxofony.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/***************************************************/
/*! \class Saxofony
\brief STK faux conical bore reed instrument class.
This class implements a "hybrid" digital
waveguide instrument that can generate a
variety of wind-like sounds. It has also been
referred to as the "blowed string" model. The
waveguide section is essentially that of a
string, with one rigid and one lossy
termination. The non-linear function is a
reed table. The string can be "blown" at any
point between the terminations, though just as
with strings, it is impossible to excite the
system at either end. If the excitation is
placed at the string mid-point, the sound is
that of a clarinet. At points closer to the
"bridge", the sound is closer to that of a
saxophone. See Scavone (2002) for more details.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Reed Aperture = 26
- Noise Gain = 4
- Blow Position = 11
- Vibrato Frequency = 29
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995--2023.
*/
/***************************************************/
#include "Saxofony.h"
#include "SKINImsg.h"
namespace stk {
Saxofony :: Saxofony( StkFloat lowestFrequency )
{
if ( lowestFrequency <= 0.0 ) {
oStream_ << "Saxofony::Saxofony: argument is less than or equal to zero!";
handleError( StkError::FUNCTION_ARGUMENT );
}
unsigned long nDelays = (unsigned long) ( Stk::sampleRate() / lowestFrequency );
delays_[0].setMaximumDelay( nDelays + 1 );
delays_[1].setMaximumDelay( nDelays + 1 );
// Initialize blowing position to 0.2 of length.
position_ = 0.2;
reedTable_.setOffset( 0.7 );
reedTable_.setSlope( 0.3 );
vibrato_.setFrequency( 5.735 );
outputGain_ = 0.3;
noiseGain_ = 0.2;
vibratoGain_ = 0.1;
this->setFrequency( 220.0 );
this->clear();
}
Saxofony :: ~Saxofony( void )
{
}
void Saxofony :: clear( void )
{
delays_[0].clear();
delays_[1].clear();
filter_.clear();
}
void Saxofony :: setFrequency( StkFloat frequency )
{
#if defined(_STK_DEBUG_)
if ( frequency <= 0.0 ) {
oStream_ << "Saxofony::setFrequency: argument is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
#endif
// Account for filter delay and one sample "lastOut" delay.
StkFloat delay = ( Stk::sampleRate() / frequency ) - filter_.phaseDelay( frequency ) - 1.0;
delays_[0].setDelay( (1.0-position_) * delay );
delays_[1].setDelay( position_ * delay );
}
void Saxofony :: setBlowPosition( StkFloat position )
{
if ( position_ == position ) return;
if ( position < 0.0 ) position_ = 0.0;
else if ( position > 1.0 ) position_ = 1.0;
else position_ = position;
StkFloat totalDelay = delays_[0].getDelay();
totalDelay += delays_[1].getDelay();
delays_[0].setDelay( (1.0-position_) * totalDelay );
delays_[1].setDelay( position_ * totalDelay );
}
void Saxofony :: startBlowing( StkFloat amplitude, StkFloat rate )
{
if ( amplitude <= 0.0 || rate <= 0.0 ) {
oStream_ << "Saxofony::startBlowing: one or more arguments is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
envelope_.setRate( rate );
envelope_.setTarget( amplitude );
}
void Saxofony :: stopBlowing( StkFloat rate )
{
if ( rate < 0.0 ) {
oStream_ << "Saxofony::stopBlowing: argument is less than zero!";
handleError( StkError::WARNING ); return;
}
envelope_.setRate( rate );
envelope_.setTarget( 0.0 );
}
void Saxofony :: noteOn( StkFloat frequency, StkFloat amplitude )
{
this->setFrequency( frequency );
this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 );
outputGain_ = amplitude + 0.001;
}
void Saxofony :: noteOff( StkFloat amplitude )
{
this->stopBlowing( amplitude * 0.01 );
}
void Saxofony :: controlChange( int number, StkFloat value )
{
#if defined(_STK_DEBUG_)
if ( Stk::inRange( value, 0.0, 128.0 ) == false ) {
oStream_ << "Saxofony::controlChange: value (" << value << ") is out of range!";
handleError( StkError::WARNING ); return;
}
#endif
StkFloat normalizedValue = value * ONE_OVER_128;
if (number == __SK_ReedStiffness_) // 2
reedTable_.setSlope( 0.1 + (0.4 * normalizedValue) );
else if (number == __SK_NoiseLevel_) // 4
noiseGain_ = ( normalizedValue * 0.4 );
else if (number == 29) // 29
vibrato_.setFrequency( normalizedValue * 12.0 );
else if (number == __SK_ModWheel_) // 1
vibratoGain_ = ( normalizedValue * 0.5 );
else if (number == __SK_AfterTouch_Cont_) // 128
envelope_.setValue( normalizedValue );
else if (number == 11) // 11
this->setBlowPosition( normalizedValue );
else if (number == 26) // reed table offset
reedTable_.setOffset(0.4 + ( normalizedValue * 0.6));
#if defined(_STK_DEBUG_)
else {
oStream_ << "Saxofony::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#endif
}
} // stk namespace