-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyankou_cube.py
169 lines (134 loc) · 4.97 KB
/
yankou_cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#Robert Yankou rotated cube
#This program was not assigned, exactly, but it is what I made to get rotation to work for the first time
#White lines are x & y axes, the rest are the cube
import pygame, math, time
from pygame.locals import *
#Create 8 points
#Translate all points according to a,b,c angles about z,y,x axes respectively
#Graph lines connecting adjacent points
#Initialize points
x = [-100,100]
y = [-100,100]
z = [-100,100]
p0 = (x[0],y[0],z[0])
p1 = (x[0],y[0],z[1])
p2 = (x[0],y[1],z[1])
p3 = (x[0],y[1],z[0])
p4 = (x[1],y[1],z[0])
p5 = (x[1],y[0],z[0])
p6 = (x[1],y[0],z[1])
p7 = (x[1],y[1],z[1])
p8 = (-x[1],y[0],z[0])
p9 = (x[1],y[0],z[0])
p10 = (x[0],-y[1],z[0])
p11 = (x[0],y[1],z[0])
p = [p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11]
#Angles of rotation
anglea = 1*math.pi/4
angleb = 0*math.pi/4
anglec = 2*math.pi/4
#Possible pathways for connecting the 8 corners of the cube
#Linear but 3 retraces
#path1: p1>p2>p3>p4>p5>p6>p7>p8>p5>p6>p1>p2>p7>p8>p3
#Nonlinear thus difficult
#path2: p1>p6,p1>p4,p1>p2,p5>p4,p5>p6,p5>p8,p7>p2,p7>p8,p7>p6,p3>p8,p3>p2,p3>p4
#Composite linear/non-linear
#path3:p1>p2>p3>p4>p5>p6>p7>p8>p5,p8>p3,p1>p6,p2>p7
#Defines matrices
a = [[0 for col in range(3)] for row in range(3)]
b = [[0 for col in range(3)] for row in range(3)]
c = [[0 for col in range(3)] for row in range(3)]
#Matrix angle a around z-axis
a[0][0]=math.cos(anglea)
a[0][1]=math.sin(anglea)
a[0][2]=0
a[1][0]=-math.sin(anglea)
a[1][1]=math.cos(anglea)
a[1][2]=0
a[2][0]=0
a[2][1]=0
a[2][2]=1
#Matrix angle b around y-axis
b[0][0]=math.cos(angleb)
b[0][1]=0
b[0][2]=math.sin(angleb)
b[1][0]=0
b[1][1]=1
b[1][2]=0
b[2][0]=-math.sin(angleb)
b[2][1]=0
b[2][2]=math.cos(angleb)
#Matrix angle c around x-axis
c[0][0]=1
c[0][1]=0
c[0][2]=0
c[1][0]=0
c[1][1]=math.cos(anglec)
c[1][2]=math.sin(anglec)
c[2][0]=0
c[2][1]=-math.sin(anglec)
c[2][2]=math.cos(anglec)
#Define [x,y,z]
d = p[0]
#print(a[0][0])
"""[[0 for col in range(1)] for row in range(3)]
d[0][0]=x
d[1][0]=y
d[2][0]=z"""
#Multiply matrices together
for f in range(12):
if anglea != 0:
xp = p[f][0]*a[0][0]+p[f][1]*a[0][1]+p[f][2]*a[0][2]
yp = p[f][0]*a[1][0]+p[f][1]*a[1][1]+p[f][2]*a[1][2]
zp = p[f][0]*a[2][0]+p[f][1]*a[2][1]+p[f][2]*a[2][2]
p[f] = (xp,yp,zp)
if angleb != 0:
xp = p[f][0]*b[0][0]+p[f][1]*b[0][1]+p[f][2]*b[0][2]
yp = p[f][0]*b[1][0]+p[f][1]*b[1][1]+p[f][2]*b[1][2]
zp = p[f][0]*b[2][0]+p[f][1]*b[2][1]+p[f][2]*b[2][2]
p[f] = (xp,yp,zp)
if anglec != 0:
xp = p[f][0]*c[0][0]+p[f][1]*c[0][1]+p[f][2]*c[0][2]
yp = p[f][0]*c[1][0]+p[f][1]*c[1][1]+p[f][2]*c[1][2]
zp = p[f][0]*c[2][0]+p[f][1]*c[2][1]+p[f][2]*c[2][2]
p[f] = (xp,yp,zp)
running = True
W, H = 500, 500 #Screen size
pygame.init()
screen = pygame.display.set_mode((W,H))
pygame.display.set_caption("Cube")
pygame.draw.line(screen, (255,255,255), (p[8][0]+W/2,p[8][1]+H/2), (p[9][0]+W/2,p[9][1]+H/2), 4) #x axis
pygame.draw.line(screen, (255,255,255), (p[10][0]+W/2,p[10][1]+H/2), (p[11][0]+W/2,p[11][1]+H/2), 4) #y axis
pygame.display.flip()
#path2: p1>p6,p1>p4,p1>p2, p5>p4,p5>p6,p5>p8, p7>p2,p7>p8,p7>p6, p3>p8,p3>p2,p3>p4
pygame.draw.aaline(screen,(255,255,0),(p[0][0]+W/2,p[0][1]+H/2),(p[5][0]+W/2,p[5][1]+H/2),1)
pygame.draw.aaline(screen,(255,255,0),(p[0][0]+W/2,p[0][1]+H/2),(p[3][0]+W/2,p[3][1]+H/2),1)
pygame.draw.aaline(screen,(255,255,0),(p[0][0]+W/2,p[0][1]+H/2),(p[1][0]+W/2,p[1][1]+H/2),1)
pygame.draw.aaline(screen,(0,255,255),(p[4][0]+W/2,p[4][1]+H/2),(p[3][0]+W/2,p[3][1]+H/2),1)
pygame.draw.aaline(screen,(0,255,255),(p[4][0]+W/2,p[4][1]+H/2),(p[5][0]+W/2,p[5][1]+H/2),1)
pygame.draw.aaline(screen,(0,255,255),(p[4][0]+W/2,p[4][1]+H/2),(p[7][0]+W/2,p[7][1]+H/2),1)
pygame.draw.aaline(screen,(255,0,255),(p[6][0]+W/2,p[6][1]+H/2),(p[1][0]+W/2,p[1][1]+H/2),1)
pygame.draw.aaline(screen,(255,0,255),(p[6][0]+W/2,p[6][1]+H/2),(p[7][0]+W/2,p[7][1]+H/2),1)
pygame.draw.aaline(screen,(255,0,255),(p[6][0]+W/2,p[6][1]+H/2),(p[5][0]+W/2,p[5][1]+H/2),1)
pygame.draw.aaline(screen,(100,100,100),(p[2][0]+W/2,p[2][1]+H/2),(p[7][0]+W/2,p[7][1]+H/2),1)
pygame.draw.aaline(screen,(100,100,100),(p[2][0]+W/2,p[2][1]+H/2),(p[1][0]+W/2,p[1][1]+H/2),1)
pygame.draw.aaline(screen,(100,100,100),(p[2][0]+W/2,p[2][1]+H/2),(p[3][0]+W/2,p[3][1]+H/2),1)
pygame.display.flip()
# Enables the ability to close the graph w/o crashing the program
while running:
for event in pygame.event.get():
if event.type == QUIT:
running = False
if event.type == KEYDOWN and event.key == K_ESCAPE:
running = False
pygame.display.quit()
"""xold = x_zero+m*x #initial x
yold = y_zero+m*y #initial y"""
"""pygame.draw.aaline(screen,(255,255,0),(xold,yold),(m*x+W/2,-m*y+H/2),1)
pygame.draw.aaline(screen,(255,255,0),(0,0),(1,1),1)
pygame.display.flip()
time.sleep(.0) #adjust this number to speed up/slow the graph
xold = m*x+W/4
yold = m*y+W/4"""
#Multiply product matrix with each point to solve for new points
#Graph new points to output using 2 of three coordinates