-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.xml
1457 lines (1396 loc) · 99.8 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Thom Volker</title>
<link>https://thomvolker.github.io/</link>
<atom:link href="https://thomvolker.github.io/index.xml" rel="self" type="application/rss+xml" />
<description>Thom Volker</description>
<generator>Source Themes Academic (https://sourcethemes.com/academic/)</generator><language>en-us</language><copyright>© Thom Volker 2023</copyright><lastBuildDate>Sat, 01 Jun 2030 13:00:00 +0000</lastBuildDate>
<image>
<url>https://thomvolker.github.io/img/avatar.png</url>
<title>Thom Volker</title>
<link>https://thomvolker.github.io/</link>
</image>
<item>
<title>Example Page 1</title>
<link>https://thomvolker.github.io/courses/example/example1/</link>
<pubDate>Sun, 05 May 2019 00:00:00 +0100</pubDate>
<guid>https://thomvolker.github.io/courses/example/example1/</guid>
<description><p>In this tutorial, I&rsquo;ll share my top 10 tips for getting started with Academic:</p>
<h2 id="tip-1">Tip 1</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
<h2 id="tip-2">Tip 2</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
</description>
</item>
<item>
<title>Example Page 2</title>
<link>https://thomvolker.github.io/courses/example/example2/</link>
<pubDate>Sun, 05 May 2019 00:00:00 +0100</pubDate>
<guid>https://thomvolker.github.io/courses/example/example2/</guid>
<description><p>Here are some more tips for getting started with Academic:</p>
<h2 id="tip-3">Tip 3</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
<h2 id="tip-4">Tip 4</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.</p>
<p>Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.</p>
<p>Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.</p>
<p>Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.</p>
<p>Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.</p>
</description>
</item>
<item>
<title>Example Talk</title>
<link>https://thomvolker.github.io/talk/example/</link>
<pubDate>Sat, 01 Jun 2030 13:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/talk/example/</guid>
<description><div class="alert alert-note">
<div>
Click on the <strong>Slides</strong> button above to view the built-in slides feature.
</div>
</div>
<p>Slides can be added in a few ways:</p>
<ul>
<li><strong>Create</strong> slides using Academic&rsquo;s
<a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides" target="_blank" rel="noopener"><em>Slides</em></a> feature and link using <code>slides</code> parameter in the front matter of the talk file</li>
<li><strong>Upload</strong> an existing slide deck to <code>static/</code> and link using <code>url_slides</code> parameter in the front matter of the talk file</li>
<li><strong>Embed</strong> your slides (e.g. Google Slides) or presentation video on this page using
<a href="https://sourcethemes.com/academic/docs/writing-markdown-latex/" target="_blank" rel="noopener">shortcodes</a>.</li>
</ul>
<p>Further talk details can easily be added to this page using <em>Markdown</em> and $\rm \LaTeX$ math code.</p>
</description>
</item>
<item>
<title>Anonymiced Shareable Data: Using mice to Create and Analyze Multiply Imputed Synthetic Datasets</title>
<link>https://thomvolker.github.io/publication/synthemice/</link>
<pubDate>Tue, 23 Nov 2021 00:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/publication/synthemice/</guid>
<description><p>All accompanying files and <code>R</code>-code can be found on the project&rsquo;s
<a href="https://github.com/amices/Synthemice" target="_blank" rel="noopener">GitHub page</a>.</p>
</description>
</item>
<item>
<title>Psychometrics Assignment 2 - Societal Data Analytics</title>
<link>https://thomvolker.github.io/post/thomvolkerpsychometrics/</link>
<pubDate>Thu, 02 Jul 2020 00:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/post/thomvolkerpsychometrics/</guid>
<description>
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>Fake news poses problems to present-day societies, and in some instances, it can even become dangerous, for example when people believe in the relationship between vaccines and autism. Multiple sites exist that fact-check online sources of information with regard to whether the provided information was real or fake. An algorithm that could be trained to distinguish real from fake news would make this process easier and faster. Therefore, it is attempted to construct a machine learning method that is able to distinguish fake from real news, by means of analyzing the textual data at hand.</p>
</div>
<div id="methods" class="section level1">
<h1>Methods</h1>
<p>The dataset contained 500 texts that had on average nearly 800 words, and additionally a title and a label that indicates whether or not the text was fake. Used features were word unigrams, bigrams and trigrams, and combinations of the three. It was investigated whether frequencies of certain words or combinations of words (up to a maximum length of three) were indicative of the truthfulness of the text. The data was prepared for usage by means of removing excessive white spaces, punctuation, numbers, non-ASCII characters, replacing capitals by lower case letters, removing English stopwords, and applying Porter’s stemming algorithm (to make sure that common words are identified as common words), in this specific order. Additionally, sparse terms were removed, with a maximum allowed sparsity of 0.90 in case of the unigrams, 0.95 in case of bigrams and 0.97 in case of the trigrams and combinations of unigrams, bigrams and trigrams. The training set consists of 80% of the original dataset, and is chosen at random; the remaining 20% serves as the validation data. All methods were ran with the same seed, which ensures that all methods use the same observations (texts) to build the model on.</p>
<p>Four different methods were considered to build a model. The first one was a classification tree, the second one was a classification tree that was pruned by means of the cross-validation error based on the complexity parameter, the third model under consideration was a logistic regression model, and the fourth model was a support vector machine model. All models can handle the dichotomous outcome variable, and it was attempted to predict whether the document was real or fake in the validation data. The performance of all methods under the specified input (unigrams, bigrams, trigrams or a combination of the three) was measured by means of accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the F1-measure.</p>
<div class="figure"><span id="fig:unnamed-chunk-2"></span>
<img src="https://thomvolker.github.io/post/ThomVolkerPsychometrics_files/figure-html/unnamed-chunk-2-1.png" alt="Figure 1. Wordcloud containing the most frequently occurring words in the data, after the pre-processing steps." width="2800" />
<p class="caption">
Figure 1: Figure 1. Wordcloud containing the most frequently occurring words in the data, after the pre-processing steps.
</p>
</div>
<p>However, when the logistic model was used, the maximum allowed sparsity has to be further reduced when analyzing the unigrams, because otherwise, overfitting would be severe (to such an extent that a single variable for every model can be chosen). To avoid this problem, when unigrams were analyzed by means of the logistic regression model, the maximum allowed sparsity was reduced to 0.70. Combinations of unigrams, bigrams and trigrams were not considered, simply because bigrams and trigrams occured too infrequently in multiple texts, so that in the end, only unigrams would have been analyzed, if there is accounted for the overfitting problem.</p>
</div>
<div id="results" class="section level1">
<h1>Results</h1>
<p>The dimensions of the training and test sets were equal, except for the fact that obviously, the training data contained 400 rows, while the test data only contained 100 rows. After initially performing the analysis, it appeared that all models performed reasonable, with an accuracy of around 0.75 when the unigrams were taken into account, eventually in combination with bigrams and/or trigrams (results are mentioned in Appendix A, since they were not of primary interest). When solely bigrams and trigrams were considered, the accuracy ranged between 0.60 and 0.70. However, one of the words that occurred very often as one of the first nodes was “said”, which was not very informative, in my opinion. Therefore, I decided to exclude this word, and run the analysis again. Because removing the word ‘said’ would not make any difference with respect to bigrams and trigrams, and the models fitted on bigrams and trigrams initially did not perform that well, these two models were not considered any further.</p>
<p>As can be seen in Table 1, considering bigrams and trigrams next to unigrams did did not strengthen the accuracy of the considered methods. Overall, the results were very similar, and only considering unigrams yielded slightly better results as compared to additionally using bigrams and trigrams. Additionally, there was nearly no difference between the performance of the considered measures. However, it is noteworthy that the sensitivity of the Pruned Classification Tree is very high, while the specificity is much lower, while in case of the regular Classification Tree, the specificity is very high, but the sensitivity is much lower.</p>
<table>
<caption><span id="tab:unnamed-chunk-3">Table 1: </span>Table 1: Results of the classification methods on the text only, without infrequently occurring words and without the word ‘said’</caption>
<thead>
<tr class="header">
<th align="left"></th>
<th align="left">Method</th>
<th align="right">Accuracy</th>
<th align="right">Sensitivity</th>
<th align="right">Specificity</th>
<th align="right">PPV</th>
<th align="right">NPV</th>
<th align="right">F1.measure</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Unigrams</td>
<td align="left">CT</td>
<td align="right">0.71</td>
<td align="right">0.700</td>
<td align="right">0.725</td>
<td align="right">0.792</td>
<td align="right">0.617</td>
<td align="right">0.743</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.71</td>
<td align="right">0.700</td>
<td align="right">0.725</td>
<td align="right">0.792</td>
<td align="right">0.617</td>
<td align="right">0.743</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">LR</td>
<td align="right">0.75</td>
<td align="right">0.700</td>
<td align="right">0.825</td>
<td align="right">0.857</td>
<td align="right">0.647</td>
<td align="right">0.771</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.77</td>
<td align="right">0.767</td>
<td align="right">0.775</td>
<td align="right">0.836</td>
<td align="right">0.689</td>
<td align="right">0.800</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Bigrams</td>
<td align="left">CT</td>
<td align="right">0.65</td>
<td align="right">0.683</td>
<td align="right">0.600</td>
<td align="right">0.719</td>
<td align="right">0.558</td>
<td align="right">0.701</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.68</td>
<td align="right">0.783</td>
<td align="right">0.525</td>
<td align="right">0.712</td>
<td align="right">0.618</td>
<td align="right">0.746</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
<tr class="even">
<td align="left">Unigrams+Bigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.65</td>
<td align="right">0.683</td>
<td align="right">0.600</td>
<td align="right">0.719</td>
<td align="right">0.558</td>
<td align="right">0.701</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.68</td>
<td align="right">0.783</td>
<td align="right">0.525</td>
<td align="right">0.712</td>
<td align="right">0.618</td>
<td align="right">0.746</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.65</td>
<td align="right">0.683</td>
<td align="right">0.600</td>
<td align="right">0.719</td>
<td align="right">0.558</td>
<td align="right">0.701</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.68</td>
<td align="right">0.783</td>
<td align="right">0.525</td>
<td align="right">0.712</td>
<td align="right">0.618</td>
<td align="right">0.746</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
</tbody>
</table>
<p><em>Note.</em> Considered methods were Classification Trees (CT), Pruned Classification Trees based on the validation error (PCT), Logistic Regression (LR) and Support Vector Machines (SVM).</p>
<p>Words that were regarded as influencial, according to the Classification Tree method containing only unigrams can be found in Figure 2. It appears that persons who mentioned the word ‘gop’, which is an abbreviation of “Grand Old Party”, referring to the Republican Party, are not expected to provide fake news. Texts that do not contain ‘gop’, but do mention ‘sen’, which is a slightly problematic stem, since it can refer to more than 200 distinct word, among others ‘senator’ and ‘sentence’, are also expected to be real. People who do not mention ‘gop’, do not mention ‘sen’, do not mention ‘thursday’, but do mention ‘octob’ at least once are expected to provide fake news. In depth interpretation of these words must however be done by a specialist, who is well aware of “hot topics” among fake news providers and American actualities.</p>
<div class="figure"><span id="fig:unnamed-chunk-4"></span>
<img src="https://thomvolker.github.io/post/ThomVolkerPsychometrics_files/figure-html/unnamed-chunk-4-1.png" alt="Figure 2. Plot of the results of the Classification Tree on the unigrams without infrequently occurring words and without the word 'said'." width="2800" />
<p class="caption">
Figure 2: Figure 2. Plot of the results of the Classification Tree on the unigrams without infrequently occurring words and without the word ‘said’.
</p>
</div>
<p>However, some cells in the data appeared to be empty, but did have a title. So in addition to the previous analysis, I also considered a model in which the title was added to the text. Since removing the word ‘said’ proved to be useful, I continued with discarding ‘said’ from the analyses. The best overall model was the Pruned Classification Tree that analyzed unigrams only, since it had both the highest accuracy and the highest F1-measure of all models considered. That is, overall, this model classified the most cases accordingly (Table 2).</p>
<table>
<caption><span id="tab:unnamed-chunk-5">Table 2: </span>Table 2: Results of the classification methods on the text including the title, without infrequently occurring words and without the frequently occurring word ‘said’</caption>
<thead>
<tr class="header">
<th align="left"></th>
<th align="left">Method</th>
<th align="right">Accuracy</th>
<th align="right">Sensitivity</th>
<th align="right">Specificity</th>
<th align="right">PPV</th>
<th align="right">NPV</th>
<th align="right">F1.measure</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Unigrams</td>
<td align="left">CT</td>
<td align="right">0.78</td>
<td align="right">0.717</td>
<td align="right">0.875</td>
<td align="right">0.896</td>
<td align="right">0.673</td>
<td align="right">0.796</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.81</td>
<td align="right">0.883</td>
<td align="right">0.700</td>
<td align="right">0.815</td>
<td align="right">0.800</td>
<td align="right">0.848</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">LR</td>
<td align="right">0.74</td>
<td align="right">0.683</td>
<td align="right">0.825</td>
<td align="right">0.854</td>
<td align="right">0.635</td>
<td align="right">0.759</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.80</td>
<td align="right">0.800</td>
<td align="right">0.800</td>
<td align="right">0.857</td>
<td align="right">0.727</td>
<td align="right">0.828</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Bigrams</td>
<td align="left">CT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.73</td>
<td align="right">0.717</td>
<td align="right">0.750</td>
<td align="right">0.811</td>
<td align="right">0.638</td>
<td align="right">0.761</td>
</tr>
<tr class="even">
<td align="left">Unigrams+Bigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.72</td>
<td align="right">0.700</td>
<td align="right">0.750</td>
<td align="right">0.808</td>
<td align="right">0.625</td>
<td align="right">0.750</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.73</td>
<td align="right">0.767</td>
<td align="right">0.675</td>
<td align="right">0.780</td>
<td align="right">0.659</td>
<td align="right">0.773</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.72</td>
<td align="right">0.700</td>
<td align="right">0.750</td>
<td align="right">0.808</td>
<td align="right">0.625</td>
<td align="right">0.750</td>
</tr>
</tbody>
</table>
<p><em>Note.</em> Considered methods were Classification Trees (CT), Pruned Classification Trees based on the validation error (PCT), Logistic Regression (LR) and Support Vector Machines (SVM).
Second results.</p>
<div class="figure"><span id="fig:unnamed-chunk-6"></span>
<img src="https://thomvolker.github.io/post/ThomVolkerPsychometrics_files/figure-html/unnamed-chunk-6-1.png" alt="Figure 3. Plot of the results of the Pruned Classification Tree on the unigrams without infrequently occurring words and without the word 'said'." width="2800" />
<p class="caption">
Figure 3: Figure 3. Plot of the results of the Pruned Classification Tree on the unigrams without infrequently occurring words and without the word ‘said’.
</p>
</div>
<p>The pruned classification tree is in this scenario relatively simple. Once again, ‘gop’ is an important phrase, and the same holds for ‘thursday’ and ‘octob’. People who do mention ‘gop’ are expected to provide real news, as well as people who do not mention ‘gop’ at all, but do mention ‘thursday’. People who do not mention ‘gop’, do not mention ‘thursday’, but do mention ’octob are expected to provide fake news.</p>
<p>In practice, I would not use the model to base important decisions on, since the accuracy was not extremely high, and overall there were a substantial number of misclassifications. However, the provided models might be useful to guide people with interest in tracking down fake news, because it can narrow their search for texts that might be interesting. Given the fact that these people will probably not be able to identify all fake news going around, a narrower scope might help them to search for suspicious news.</p>
<p>To conclude, I would prefer the models based on Classification Trees, due to their simplicity. In my opinion, working with people who might not have profound knowledge about statistical topics, a simpler model might suit better. Of course, it is better to use a model that fits than a poor fitting model. However, in the current situation, it does not same to make a lot of difference which model one uses, and thus a Classification Tree, eventually with pruning after building the tree, might be best suited.</p>
</div>
<div id="appendix-a" class="section level1">
<h1>Appendix A</h1>
<table>
<caption><span id="tab:unnamed-chunk-7">Table 3: </span>Results of initial analyses containing unigrams, bigrams and trigrams separately and combinations of the three.</caption>
<thead>
<tr class="header">
<th align="left"></th>
<th align="left">Method</th>
<th align="right">Accuracy</th>
<th align="right">Sensitivity</th>
<th align="right">Specificity</th>
<th align="right">PPV</th>
<th align="right">NPV</th>
<th align="right">F1.measure</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Unigrams</td>
<td align="left">CT</td>
<td align="right">0.72</td>
<td align="right">0.800</td>
<td align="right">0.600</td>
<td align="right">0.750</td>
<td align="right">0.667</td>
<td align="right">0.774</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.76</td>
<td align="right">0.850</td>
<td align="right">0.625</td>
<td align="right">0.773</td>
<td align="right">0.735</td>
<td align="right">0.810</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">LR</td>
<td align="right">0.75</td>
<td align="right">0.700</td>
<td align="right">0.825</td>
<td align="right">0.857</td>
<td align="right">0.647</td>
<td align="right">0.771</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.77</td>
<td align="right">0.767</td>
<td align="right">0.775</td>
<td align="right">0.836</td>
<td align="right">0.689</td>
<td align="right">0.800</td>
</tr>
<tr class="odd">
<td align="left">Bigrams</td>
<td align="left">CT</td>
<td align="right">0.66</td>
<td align="right">0.817</td>
<td align="right">0.425</td>
<td align="right">0.681</td>
<td align="right">0.607</td>
<td align="right">0.742</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.65</td>
<td align="right">0.850</td>
<td align="right">0.350</td>
<td align="right">0.662</td>
<td align="right">0.609</td>
<td align="right">0.745</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">LR</td>
<td align="right">0.71</td>
<td align="right">0.717</td>
<td align="right">0.700</td>
<td align="right">0.782</td>
<td align="right">0.622</td>
<td align="right">0.748</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.68</td>
<td align="right">0.683</td>
<td align="right">0.675</td>
<td align="right">0.759</td>
<td align="right">0.587</td>
<td align="right">0.719</td>
</tr>
<tr class="odd">
<td align="left">Trigrams</td>
<td align="left">CT</td>
<td align="right">0.62</td>
<td align="right">0.867</td>
<td align="right">0.250</td>
<td align="right">0.634</td>
<td align="right">0.556</td>
<td align="right">0.732</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.61</td>
<td align="right">0.867</td>
<td align="right">0.225</td>
<td align="right">0.627</td>
<td align="right">0.529</td>
<td align="right">0.727</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">LR</td>
<td align="right">0.63</td>
<td align="right">0.867</td>
<td align="right">0.275</td>
<td align="right">0.642</td>
<td align="right">0.579</td>
<td align="right">0.738</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.64</td>
<td align="right">0.867</td>
<td align="right">0.300</td>
<td align="right">0.650</td>
<td align="right">0.600</td>
<td align="right">0.743</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Bigrams</td>
<td align="left">CT</td>
<td align="right">0.68</td>
<td align="right">0.683</td>
<td align="right">0.675</td>
<td align="right">0.759</td>
<td align="right">0.587</td>
<td align="right">0.719</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.75</td>
<td align="right">0.833</td>
<td align="right">0.625</td>
<td align="right">0.769</td>
<td align="right">0.714</td>
<td align="right">0.800</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
<tr class="even">
<td align="left">Unigrams+Bigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.68</td>
<td align="right">0.683</td>
<td align="right">0.675</td>
<td align="right">0.759</td>
<td align="right">0.587</td>
<td align="right">0.719</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.75</td>
<td align="right">0.833</td>
<td align="right">0.625</td>
<td align="right">0.769</td>
<td align="right">0.714</td>
<td align="right">0.800</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
<tr class="odd">
<td align="left">Unigrams+Trigrams</td>
<td align="left">CT</td>
<td align="right">0.68</td>
<td align="right">0.683</td>
<td align="right">0.675</td>
<td align="right">0.759</td>
<td align="right">0.587</td>
<td align="right">0.719</td>
</tr>
<tr class="even">
<td align="left"></td>
<td align="left">PCT</td>
<td align="right">0.75</td>
<td align="right">0.833</td>
<td align="right">0.625</td>
<td align="right">0.769</td>
<td align="right">0.714</td>
<td align="right">0.800</td>
</tr>
<tr class="odd">
<td align="left"></td>
<td align="left">SVM</td>
<td align="right">0.74</td>
<td align="right">0.733</td>
<td align="right">0.750</td>
<td align="right">0.815</td>
<td align="right">0.652</td>
<td align="right">0.772</td>
</tr>
</tbody>
</table>
<p><em>Note.</em> Considered methods were Classification Trees (CT), Pruned Classification Trees based on the validation error (PCT), Logistic Regression (LR) and Support Vector Machines (SVM).
Second results.</p>
</div>
</description>
</item>
<item>
<title>Writing technical content in Academic</title>
<link>https://thomvolker.github.io/post/writing-technical-content/</link>
<pubDate>Fri, 12 Jul 2019 00:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/post/writing-technical-content/</guid>
<description><p>Academic is designed to give technical content creators a seamless experience. You can focus on the content and Academic handles the rest.</p>
<p><strong>Highlight your code snippets, take notes on math classes, and draw diagrams from textual representation.</strong></p>
<p>On this page, you&rsquo;ll find some examples of the types of technical content that can be rendered with Academic.</p>
<h2 id="examples">Examples</h2>
<h3 id="code">Code</h3>
<p>Academic supports a Markdown extension for highlighting code syntax. You can enable this feature by toggling the <code>highlight</code> option in your <code>config/_default/params.toml</code> file.</p>
<pre><code>```python
import pandas as pd
data = pd.read_csv(&quot;data.csv&quot;)
data.head()
```
</code></pre>
<p>renders as</p>
<pre><code class="language-python">import pandas as pd
data = pd.read_csv(&quot;data.csv&quot;)
data.head()
</code></pre>
<h3 id="math">Math</h3>
<p>Academic supports a Markdown extension for $\LaTeX$ math. You can enable this feature by toggling the <code>math</code> option in your <code>config/_default/params.toml</code> file.</p>
<p>To render <em>inline</em> or <em>block</em> math, wrap your LaTeX math with <code>$...$</code> or <code>$$...$$</code>, respectively.</p>
<p>Example <strong>math block</strong>:</p>
<pre><code class="language-tex">$$\gamma_{n} = \frac{
\left | \left (\mathbf x_{n} - \mathbf x_{n-1} \right )^T
\left [\nabla F (\mathbf x_{n}) - \nabla F (\mathbf x_{n-1}) \right ] \right |}
{\left \|\nabla F(\mathbf{x}_{n}) - \nabla F(\mathbf{x}_{n-1}) \right \|^2}$$
</code></pre>
<p>renders as</p>
<p>$$\gamma_{n} = \frac{ \left | \left (\mathbf x_{n} - \mathbf x_{n-1} \right )^T \left [\nabla F (\mathbf x_{n}) - \nabla F (\mathbf x_{n-1}) \right ] \right |}{\left |\nabla F(\mathbf{x}<em>{n}) - \nabla F(\mathbf{x}</em>{n-1}) \right |^2}$$</p>
<p>Example <strong>inline math</strong> <code>$\nabla F(\mathbf{x}_{n})$</code> renders as $\nabla F(\mathbf{x}_{n})$.</p>
<p>Example <strong>multi-line math</strong> using the <code>\\\\</code> math linebreak:</p>
<pre><code class="language-tex">$$f(k;p_0^*) = \begin{cases} p_0^* &amp; \text{if }k=1, \\\\
1-p_0^* &amp; \text {if }k=0.\end{cases}$$
</code></pre>
<p>renders as</p>
<p>$$f(k;p_0^<em>) = \begin{cases} p_0^</em> &amp; \text{if }k=1, \\
1-p_0^* &amp; \text {if }k=0.\end{cases}$$</p>
<h3 id="diagrams">Diagrams</h3>
<p>Academic supports a Markdown extension for diagrams. You can enable this feature by toggling the <code>diagram</code> option in your <code>config/_default/params.toml</code> file or by adding <code>diagram: true</code> to your page front matter.</p>
<p>An example <strong>flowchart</strong>:</p>
<pre><code>```mermaid
graph TD
A[Hard] --&gt;|Text| B(Round)
B --&gt; C{Decision}
C --&gt;|One| D[Result 1]
C --&gt;|Two| E[Result 2]
```
</code></pre>
<p>renders as</p>
<pre><code class="language-mermaid">graph TD
A[Hard] --&gt;|Text| B(Round)
B --&gt; C{Decision}
C --&gt;|One| D[Result 1]
C --&gt;|Two| E[Result 2]
</code></pre>
<p>An example <strong>sequence diagram</strong>:</p>
<pre><code>```mermaid
sequenceDiagram
Alice-&gt;&gt;John: Hello John, how are you?
loop Healthcheck
John-&gt;&gt;John: Fight against hypochondria
end
Note right of John: Rational thoughts!
John--&gt;&gt;Alice: Great!
John-&gt;&gt;Bob: How about you?
Bob--&gt;&gt;John: Jolly good!
```
</code></pre>
<p>renders as</p>
<pre><code class="language-mermaid">sequenceDiagram
Alice-&gt;&gt;John: Hello John, how are you?
loop Healthcheck
John-&gt;&gt;John: Fight against hypochondria
end
Note right of John: Rational thoughts!
John--&gt;&gt;Alice: Great!
John-&gt;&gt;Bob: How about you?
Bob--&gt;&gt;John: Jolly good!
</code></pre>
<p>An example <strong>Gantt diagram</strong>:</p>
<pre><code>```mermaid
gantt
section Section
Completed :done, des1, 2014-01-06,2014-01-08
Active :active, des2, 2014-01-07, 3d
Parallel 1 : des3, after des1, 1d
Parallel 2 : des4, after des1, 1d
Parallel 3 : des5, after des3, 1d
Parallel 4 : des6, after des4, 1d
```
</code></pre>
<p>renders as</p>
<pre><code class="language-mermaid">gantt
section Section
Completed :done, des1, 2014-01-06,2014-01-08
Active :active, des2, 2014-01-07, 3d
Parallel 1 : des3, after des1, 1d
Parallel 2 : des4, after des1, 1d
Parallel 3 : des5, after des3, 1d
Parallel 4 : des6, after des4, 1d
</code></pre>
<p>An example <strong>class diagram</strong>:</p>
<pre><code>```mermaid
classDiagram
Class01 &lt;|-- AveryLongClass : Cool
&lt;&lt;interface&gt;&gt; Class01
Class09 --&gt; C2 : Where am i?
Class09 --* C3
Class09 --|&gt; Class07
Class07 : equals()
Class07 : Object[] elementData
Class01 : size()
Class01 : int chimp
Class01 : int gorilla
class Class10 {
&lt;&lt;service&gt;&gt;
int id
size()
}
```
</code></pre>
<p>renders as</p>
<pre><code class="language-mermaid">classDiagram
Class01 &lt;|-- AveryLongClass : Cool
&lt;&lt;interface&gt;&gt; Class01
Class09 --&gt; C2 : Where am i?
Class09 --* C3
Class09 --|&gt; Class07
Class07 : equals()
Class07 : Object[] elementData
Class01 : size()
Class01 : int chimp
Class01 : int gorilla
class Class10 {
&lt;&lt;service&gt;&gt;
int id
size()
}
</code></pre>
<p>An example <strong>state diagram</strong>:</p>
<pre><code>```mermaid
stateDiagram
[*] --&gt; Still
Still --&gt; [*]
Still --&gt; Moving
Moving --&gt; Still
Moving --&gt; Crash
Crash --&gt; [*]
```
</code></pre>
<p>renders as</p>
<pre><code class="language-mermaid">stateDiagram
[*] --&gt; Still
Still --&gt; [*]
Still --&gt; Moving
Moving --&gt; Still
Moving --&gt; Crash
Crash --&gt; [*]
</code></pre>
<h3 id="todo-lists">Todo lists</h3>
<p>You can even write your todo lists in Academic too:</p>
<pre><code class="language-markdown">- [x] Write math example
- [x] Write diagram example
- [ ] Do something else
</code></pre>
<p>renders as</p>
<ul>
<li><input checked="" disabled="" type="checkbox"> Write math example</li>
<li><input checked="" disabled="" type="checkbox"> Write diagram example</li>
<li><input disabled="" type="checkbox"> Do something else</li>
</ul>
<h3 id="tables">Tables</h3>
<p>Represent your data in tables:</p>
<pre><code class="language-markdown">| First Header | Second Header |
| ------------- | ------------- |
| Content Cell | Content Cell |
| Content Cell | Content Cell |
</code></pre>
<p>renders as</p>
<table>
<thead>
<tr>
<th>First Header</th>
<th>Second Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Cell</td>
<td>Content Cell</td>
</tr>
<tr>
<td>Content Cell</td>
<td>Content Cell</td>
</tr>
</tbody>
</table>
<h3 id="asides">Asides</h3>
<p>Academic supports a
<a href="https://sourcethemes.com/academic/docs/writing-markdown-latex/#alerts" target="_blank" rel="noopener">shortcode for asides</a>, also referred to as <em>notices</em>, <em>hints</em>, or <em>alerts</em>. By wrapping a paragraph in <code>{{% alert note %}} ... {{% /alert %}}</code>, it will render as an aside.</p>
<pre><code class="language-markdown">{{% alert note %}}
A Markdown aside is useful for displaying notices, hints, or definitions to your readers.
{{% /alert %}}
</code></pre>
<p>renders as</p>
<div class="alert alert-note">
<div>
A Markdown aside is useful for displaying notices, hints, or definitions to your readers.
</div>
</div>
<h3 id="spoilers">Spoilers</h3>
<p>Add a spoiler to a page to reveal text, such as an answer to a question, after a button is clicked.</p>
<pre><code class="language-markdown">{{&lt; spoiler text=&quot;Click to view the spoiler&quot; &gt;}}
You found me!
{{&lt; /spoiler &gt;}}
</code></pre>
<p>renders as</p>
<div class="spoiler " >
<p>
<a class="btn btn-primary" data-toggle="collapse" href="#spoiler-1" role="button" aria-expanded="false" aria-controls="spoiler-1">
Click to view the spoiler
</a>
</p>
<div class="collapse card " id="spoiler-1">
<div class="card-body">
You found me!
</div>
</div>
</div>
<h3 id="icons">Icons</h3>
<p>Academic enables you to use a wide range of
<a href="https://sourcethemes.com/academic/docs/page-builder/#icons" target="_blank" rel="noopener">icons from <em>Font Awesome</em> and <em>Academicons</em></a> in addition to
<a href="https://sourcethemes.com/academic/docs/writing-markdown-latex/#emojis" target="_blank" rel="noopener">emojis</a>.</p>
<p>Here are some examples using the <code>icon</code> shortcode to render icons:</p>
<pre><code class="language-markdown">{{&lt; icon name=&quot;terminal&quot; pack=&quot;fas&quot; &gt;}} Terminal
{{&lt; icon name=&quot;python&quot; pack=&quot;fab&quot; &gt;}} Python
{{&lt; icon name=&quot;r-project&quot; pack=&quot;fab&quot; &gt;}} R
</code></pre>
<p>renders as</p>
<p>
<i class="fas fa-terminal pr-1 fa-fw"></i> Terminal<br>
<i class="fab fa-python pr-1 fa-fw"></i> Python<br>
<i class="fab fa-r-project pr-1 fa-fw"></i> R</p>
<h3 id="did-you-find-this-page-helpful-consider-sharing-it-">Did you find this page helpful? Consider sharing it 🙌</h3>
</description>
</item>
<item>
<title>Display Jupyter Notebooks with Academic</title>
<link>https://thomvolker.github.io/post/jupyter/</link>
<pubDate>Tue, 05 Feb 2019 00:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/post/jupyter/</guid>
<description><pre><code class="language-python">from IPython.core.display import Image
Image('https://www.python.org/static/community_logos/python-logo-master-v3-TM-flattened.png')
</code></pre>
<p><img src="./index_1_0.png" alt="png"></p>
<pre><code class="language-python">print(&quot;Welcome to Academic!&quot;)
</code></pre>
<pre><code>Welcome to Academic!
</code></pre>
<h2 id="install-python-and-jupyterlab">Install Python and JupyterLab</h2>
<p>
<a href="https://www.anaconda.com/distribution/#download-section" target="_blank" rel="noopener">Install Anaconda</a> which includes Python 3 and JupyterLab.</p>
<p>Alternatively, install JupyterLab with <code>pip3 install jupyterlab</code>.</p>
<h2 id="create-or-upload-a-jupyter-notebook">Create or upload a Jupyter notebook</h2>
<p>Run the following commands in your Terminal, substituting <code>&lt;MY-WEBSITE-FOLDER&gt;</code> and <code>&lt;SHORT-POST-TITLE&gt;</code> with the file path to your Academic website folder and a short title for your blog post (use hyphens instead of spaces), respectively:</p>
<pre><code class="language-bash">mkdir -p &lt;MY-WEBSITE-FOLDER&gt;/content/post/&lt;SHORT-POST-TITLE&gt;/
cd &lt;MY-WEBSITE-FOLDER&gt;/content/post/&lt;SHORT-POST-TITLE&gt;/
jupyter lab index.ipynb
</code></pre>
<p>The <code>jupyter</code> command above will launch the JupyterLab editor, allowing us to add Academic metadata and write the content.</p>
<h2 id="edit-your-post-metadata">Edit your post metadata</h2>
<p>The first cell of your Jupter notebook will contain your post metadata (
<a href="https://sourcethemes.com/academic/docs/front-matter/" target="_blank" rel="noopener">front matter</a>).</p>
<p>In Jupter, choose <em>Markdown</em> as the type of the first cell and wrap your Academic metadata in three dashes, indicating that it is YAML front matter:</p>
<pre><code>---
title: My post's title
date: 2019-09-01
# Put any other Academic metadata here...
---
</code></pre>
<p>Edit the metadata of your post, using the
<a href="https://sourcethemes.com/academic/docs/managing-content" target="_blank" rel="noopener">documentation</a> as a guide to the available options.</p>
<p>To set a
<a href="https://sourcethemes.com/academic/docs/managing-content/#featured-image" target="_blank" rel="noopener">featured image</a>, place an image named <code>featured</code> into your post&rsquo;s folder.</p>
<p>For other tips, such as using math, see the guide on
<a href="https://sourcethemes.com/academic/docs/writing-markdown-latex/" target="_blank" rel="noopener">writing content with Academic</a>.</p>
<h2 id="convert-notebook-to-markdown">Convert notebook to Markdown</h2>
<pre><code class="language-bash">jupyter nbconvert index.ipynb --to markdown --NbConvertApp.output_files_dir=.
</code></pre>
<h2 id="example">Example</h2>
<p>This post was created with Jupyter. The orginal files can be found at
<a href="https://github.com/gcushen/hugo-academic/tree/master/exampleSite/content/post/jupyter" target="_blank" rel="noopener">https://github.com/gcushen/hugo-academic/tree/master/exampleSite/content/post/jupyter</a></p>
</description>
</item>
<item>
<title>Slides</title>
<link>https://thomvolker.github.io/slides/example/</link>
<pubDate>Tue, 05 Feb 2019 00:00:00 +0000</pubDate>
<guid>https://thomvolker.github.io/slides/example/</guid>
<description><h1 id="create-slides-in-markdown-with-academic">Create slides in Markdown with Academic</h1>
<p>
<a href="https://sourcethemes.com/academic/" target="_blank" rel="noopener">Academic</a> |
<a href="https://sourcethemes.com/academic/docs/managing-content/#create-slides" target="_blank" rel="noopener">Documentation</a></p>
<hr>
<h2 id="features">Features</h2>
<ul>
<li>Efficiently write slides in Markdown</li>
<li>3-in-1: Create, Present, and Publish your slides</li>
<li>Supports speaker notes</li>
<li>Mobile friendly slides</li>
</ul>
<hr>
<h2 id="controls">Controls</h2>
<ul>
<li>Next: <code>Right Arrow</code> or <code>Space</code></li>
<li>Previous: <code>Left Arrow</code></li>
<li>Start: <code>Home</code></li>
<li>Finish: <code>End</code></li>
<li>Overview: <code>Esc</code></li>
<li>Speaker notes: <code>S</code></li>
<li>Fullscreen: <code>F</code></li>
<li>Zoom: <code>Alt + Click</code></li>
<li>
<a href="https://github.com/hakimel/reveal.js#pdf-export" target="_blank" rel="noopener">PDF Export</a>: <code>E</code></li>
</ul>