-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlazy_clause.py
293 lines (260 loc) · 11.7 KB
/
lazy_clause.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import random
class Lazy_Clause:
def __init__(self, list_literal):
assert len(list_literal) > 0
self.clause = list_literal
self.decision_level = [-1 for _ in self.clause]
self.value = 0 # 0 = UNASSIGNED, 1 = TRUE, -1 = FALSE
self.size = len(self.clause)
# Pick two references for a new clauses
# TODO WARNING: for learnt clauses, we need to update again the decision levels, size and pick new references
if len(self.clause) > 1:
self.refA, self.refB = random.sample(self.clause,2)
self.indexA, self.indexB = self.clause.index(self.refA), self.clause.index(self.refB)
elif len(self.clause) == 1:
self.refA = self.clause[0]
self.refB = self.refA
self.indexA, self.indexB = 0,0
def print_info(self):
print('[C] Remaining clause: ', self.clause[:self.size])
# print('[C] Refs: ', self.refA, self.refB)
# print('[C] Index: ', self.indexA, self.indexB)
# print('[C] Truth value: ', self.value)
# print('[C] Full clause ', self.clause)
# print('[C] Details on decision_level: ', self.decision_level)
def is_unit(self):
if self.size == 1:
assert self.refA == self.refB
assert self.decision_level[self.indexA] == -1
return 1
else:
return 0
def update(self, graph):
assigned_vars = graph.assigned_vars
sat_dl = []
for i in range(len(self.clause)):
# If there is one true literal in list of assigned variables => SAT and break
if self.clause[i] in assigned_vars:
self.decision_level[i] = graph.graph[self.clause[i]][1]
sat_dl.append(graph.graph[self.clause[i]][1])
# Else if the literal is false, update info
elif -self.clause[i] in assigned_vars and self.decision_level[i] == -1:
self.decision_level[i] = graph.graph[-self.clause[i]][1]
# Else continue checking next literal
else: continue
if len(sat_dl)>0:
self.value = 1
for i in range(len(self.decision_level)):
if self.decision_level[i] == -1:
self.decision_level[i] = min(sat_dl)
elif self.decision_level[i] > min(sat_dl):
self.decision_level[i] = min(sat_dl)
self.size = self.decision_level.count(-1)
if self.size == 0 and len(sat_dl) == 0:
self.value = -1
self.clause = [x for _,x in sorted(zip(self.decision_level,self.clause), reverse=True)]
self.decision_level.sort(reverse=True)
self.clause = self.clause[-self.size:] + self.clause[:-self.size]
self.decision_level = self.decision_level[-self.size:] + self.decision_level[:-self.size]
# self.indexA = self.clause.index(self.refA)
# self.indexB = self.clause.index(self.refB)
def check_n_update(self, graph):
assigned_vars = graph.assigned_vars
sat_dl = []
for i in range(len(self.clause)):
# If there is one true literal in list of assigned variables => SAT
if self.clause[i] in assigned_vars:
self.decision_level[i] = graph.graph[self.clause[i]][1]
sat_dl.append(graph.graph[self.clause[i]][1])
# Else if the literal is false, update info
elif -self.clause[i] in assigned_vars and self.decision_level[i] == -1:
self.decision_level[i] = graph.graph[-self.clause[i]][1]
# Else continue checking next literal
else: continue
if len(sat_dl)>0:
for i in range(len(self.decision_level)):
if self.decision_level[i] == -1:
self.decision_level[i] = min(sat_dl)
elif self.decision_level[i] > min(sat_dl):
self.decision_level[i] = min(sat_dl)
self.value = 1
self.size = 0
self.remove_refs()
self.size = self.decision_level.count(-1)
## Arrange the decision level and according literals
self.clause = [x for _,x in sorted(zip(self.decision_level,self.clause), reverse=True)]
self.decision_level.sort(reverse=True)
assert self.size >= 0
if self.size > 0:
## But unassigned literals now are at the end (decision_level = -1)
## So move them to the head
self.clause = self.clause[-self.size:] + self.clause[:-self.size]
self.decision_level = self.decision_level[-self.size:] + self.decision_level[:-self.size]
## After moving too many times, indexes and refs are also changes
## Update them !
self.indexA = self.clause.index(self.refA)
self.indexB = self.clause.index(self.refB)
self.pick_new_ref()
assert self.value == 0
# if self.size == 1:
# for l in self.clause[self.size:]:
# assert -l in assigned_vars
else:
if self.value != 1:
self.value = -1
self.remove_refs()
# assert self.size == self.decision_level.count(-1)
def pick_new_ref(self):
assert self.size > 0
assert self.size == self.decision_level.count(-1)
if self.size == 1:
assert self.decision_level[0] == -1
self.refA = self.clause[0]
self.refB = self.refA
else: #self.size > 1
if self.refA is None :
self.refA, self.refB = random.sample(self.clause[:self.size],2)
else:
# self.print_info()
pool_refs = self.clause[:self.size]
A_ok, B_ok = False, False
if self.refA in pool_refs: # keep refA
pool_refs.remove(self.refA)
A_ok = True
if self.refB in pool_refs: # keep refB
pool_refs.remove(self.refB)
B_ok = True
if not A_ok:
assert len(pool_refs) > 0
self.refA = random.choice(pool_refs)
pool_refs.remove(self.refA)
A_ok = True
if not B_ok:
assert len(pool_refs) > 0
self.refB = random.choice(pool_refs)
pool_refs.remove(self.refB)
B_ok = True
assert A_ok and B_ok
self.indexA = self.clause.index(self.refA)
self.indexB = self.clause.index(self.refB)
assert self.decision_level[self.indexA] == -1
assert self.decision_level[self.indexB] == -1
if self.size > 1:
assert self.refA != self.refB
def remove_refs(self):
self.refA, self.refB = None, None
self.indexA, self.indexB = None, None
def bcp(self, literal, decision_level, graph):
assert self.size >= 0
assert self.size == self.decision_level.count(-1)
# Lazy clause is visited only when Var(litteral) is Var(refA) or Var(refB)
# Case 1: size == 0, all literals are assigned ! check its value
if self.size == 0:
assert self.value != 0
assert self.refA == None
assert self.refB == None
# Case 2: If clause is unit
elif self.size == 1:
assert self.refA != None
assert self.refA == self.refB
assert self.indexA == self.indexB
assert self.decision_level[self.indexA] == -1
assert self.value == 0
assert decision_level >= max(self.decision_level)
# for l in self.clause[self.size:]:
# assert -l in graph.assigned_vars
if literal == self.refA: #SAT
self.decision_level[self.indexA] = decision_level
self.size = 0
self.value = 1
self.remove_refs()
elif -literal == self.refA: #UNSAT
self.decision_level[self.indexA] = decision_level
self.size = 0
self.value = -1
self.remove_refs()
else:
pass
# Case 3: clause is not unit => we need to bcp
elif self.size > 1:
# self.print_info()
assert self.refA != None
assert self.refB != None
assert self.refA != self.refB
assert self.value == 0
assert self.decision_level[self.indexA] == -1
assert self.decision_level[self.indexB] == -1
assert decision_level >= max(self.decision_level)
if literal == self.refA or literal == self.refB: #SAT => Check
self.check_n_update(graph)
elif -literal == self.refA or -literal == self.refB: #Check
self.check_n_update(graph)
else:
pass
assert self.size == self.decision_level.count(-1)
return self.value
def restore(self, level, graph):
self.update(graph)
offset = 0
for lvl in self.decision_level:
if lvl == -1 or lvl > level:
offset += 1
self.size = offset
if self.size > 0:
self.value = 0
self.decision_level[:self.size] = [-1 for _ in range(self.size)]
self.pick_new_ref()
else:
self.remove_refs()
assert self.size == self.decision_level.count(-1)
assert max(self.decision_level) <= level
# if self.size >= 1:
# for i,l in enumerate(self.clause):
# if i < self.size:
# assert l not in graph.assigned_vars
# assert -l not in graph.assigned_vars
# else:
# assert -l in graph.assigned_vars
# assert l not in graph.assigned_vars
def literal_at_level(self, lvl):
res = []
for i in range(len(self.clause)):
if self.decision_level[i] == lvl:
res.append(self.clause[i])
return res
def get_backtrack_level(self):
m1, m2 = -1, -1
for x in list(set(self.decision_level)):
if x >= m1:
m1, m2 = x, m1
elif x > m2:
m2 = x
if m2 == -1:
m2 = m1 - 1
return m2
def resolution_operate(self, other, literal):
assert (literal in self.clause and -literal in other.clause) # or (-literal in self.clause and literal in other.clause)
index_literal = self.clause.index(literal)
res = self.clause[:index_literal] + self.clause[index_literal+1:]
dl = self.decision_level[:index_literal] + self.decision_level[index_literal+1:]
for i,l in enumerate(other.clause):
if (abs(l) != abs(literal)):
if l not in res and -l not in res:
res.append(l)
dl.append(other.decision_level[i])
elif l not in res and -l in res:
res = []
dl = []
break
elif l in res:
continue
resolved_clause = Lazy_Clause(res)
resolved_clause.set_decision_levels(dl)
resolved_clause.size = resolved_clause.decision_level.count(-1)
assert literal not in resolved_clause.clause
assert -literal not in resolved_clause.clause
return resolved_clause
def set_decision_levels(self, decision_level):
self.decision_level = decision_level
self.clause = [x for _,x in sorted(zip(self.decision_level,self.clause), reverse=True)]
self.decision_level.sort(reverse=True)