-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cls_pwd.py
624 lines (560 loc) · 27.3 KB
/
run_cls_pwd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
import argparse
import copy
import logging
import math
import os
import sys
import json
import random
from itertools import chain
import datasets
from datasets import load_dataset, load_metric, load_from_disk
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.distributions as dist
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from huggingface_hub import Repository
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForMaskedLM,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from models import LabelSmoothingLoss
from models.PWD import RecAdam
from utils import check_dir
logger = logging.getLogger(__name__)
task_to_keys = {
"mnli": ("premise", "hypothesis"),
"snli": ("premise", "hypothesis"),
"qqp": ("question1", "question2"),
"TwitterPPDB": ("question1", "question2"),
}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default=None,
help="The name of the glue task to train on.",
choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=32,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--no_sche", action="store_true"
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--conf_dir", type=str, default=None, help="Where to store the output of model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument("--do_train", action="store_true")
parser.add_argument("--eval_split", type=str, default="val")
parser.add_argument("--label_smoothing", type=float, default=-1)
parser.add_argument("--log_epoch", action="store_true")
parser.add_argument("--ckpt_path", type=str, default=None)
# RecAdam
parser.add_argument("--recadam_anneal_fun", type=str, default='sigmoid', choices=["sigmoid", "linear", 'constant'],
help="the type of annealing function in RecAdam. Default sigmoid")
parser.add_argument("--recadam_anneal_k", type=float, default=0.5, help="k for the annealing function in RecAdam.")
parser.add_argument("--recadam_anneal_t0", type=int, default=250, help="t0 for the annealing function in RecAdam.")
parser.add_argument("--recadam_anneal_w", type=float, default=1.0,
help="Weight for the annealing function in RecAdam. Default 1.0.")
parser.add_argument("--recadam_pretrain_cof", type=float, default=5000.0,
help="Coefficient of the quadratic penalty in RecAdam. Default 5000.0.")
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.push_to_hub:
assert args.output_dir is not None or args.do_train is False, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.task_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_from_disk(f'./data/processed_data/{args.task_name}')
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if args.task_name is not None:
is_regression = args.task_name == "stsb"
if not is_regression:
try:
label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
except:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
model_pt = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir="../data/huggingface/models",
)
if args.ckpt_path is None:
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir="../data/huggingface/models",
)
else:
model = AutoModelForSequenceClassification.from_pretrained(
args.ckpt_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
# Preprocessing the datasets
if args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
logger.info(
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
"Using it!"
)
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif args.task_name is None:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {id: label for label, id in config.label2id.items()}
elif args.task_name is not None and not is_regression:
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
padding = "max_length" if args.pad_to_max_length else False
glue_task = ["mnli", "qqp"]
def preprocess_function(examples):
# Tokenize the texts
texts = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*texts, padding=padding, max_length=args.max_length, truncation=True)
if "label" in examples:
if label_to_id is not None and args.task_name not in glue_task:
# Map labels to IDs (not necessary for GLUE tasks)
result["labels"] = [label_to_id[l] for l in examples["label"]]
else:
# In all cases, rename the column to labels because the model will expect that.
result["labels"] = examples["label"]
return result
with accelerator.main_process_first():
processed_datasets = raw_datasets.map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets["train"]
# eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
# eval_dataset = processed_datasets["validation"]
if args.eval_split == "val":
eval_dataset = processed_datasets["validation"]
elif args.eval_split == "test":
eval_dataset = processed_datasets["test"]
else:
raise NotImplementedError()
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
model_type = "roberta"
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
# Pre-trained weights with weight decay.
{
"params": [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and model_type in n],
"weight_decay": args.weight_decay,
"anneal_w": args.recadam_anneal_w,
"pretrain_params": [p_p for p_n, p_p in model_pt.named_parameters() if
not any(nd in p_n for nd in no_decay) and model_type in p_n]
},
# Newly inited weights with weight decay.
{
"params": [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and model_type not in n],
"weight_decay": args.weight_decay,
"anneal_w": 0.0,
"pretrain_params": [p_p for p_n, p_p in model_pt.named_parameters() if
not any(nd in p_n for nd in no_decay) and model_type not in p_n]
},
# Pre-trained weights without weight decay.
{
"params": [p for n, p in model.named_parameters() if
any(nd in n for nd in no_decay) and model_type in n],
"weight_decay": 0.0,
"anneal_w": args.recadam_anneal_w,
"pretrain_params": [p_p for p_n, p_p in model_pt.named_parameters() if
any(nd in p_n for nd in no_decay) and model_type in p_n]
},
# Newly inited weights without weight decay.
{
"params": [p for n, p in model.named_parameters() if
any(nd in n for nd in no_decay) and model_type not in n],
"weight_decay": 0.0,
"anneal_w": 0.0,
"pretrain_params": [p_p for p_n, p_p in model_pt.named_parameters() if
any(nd in p_n for nd in no_decay) and model_type not in p_n]
}
]
optimizer = RecAdam(optimizer_grouped_parameters, lr=args.learning_rate,
anneal_fun=args.recadam_anneal_fun, anneal_k=args.recadam_anneal_k,
anneal_t0=args.recadam_anneal_t0, pretrain_cof=args.recadam_pretrain_cof)
if args.label_smoothing == -1:
loss_cls_masked = CrossEntropyLoss()
else:
loss_cls_masked = LabelSmoothingLoss(args.label_smoothing, num_labels)
# Prepare everything with our `accelerator`.
model, model_pt, optimizer, train_dataloader, eval_dataloader, loss_cls_masked = accelerator.prepare(
model, model_pt, optimizer, train_dataloader, eval_dataloader, loss_cls_masked
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Get the metric function
# if args.task_name is not None:
# metric = load_metric("glue", args.task_name)
# else:
metric = load_metric("./metrics/accuracy")
# Train!
if args.do_train:
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
model_pt.eval()
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if args.no_sche:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
if not args.no_sche:
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
progress_bar.set_description(f"Loss: {loss.detach().float()}")
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
model.eval()
output_dicts = []
for step, batch in enumerate(eval_dataloader):
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
logits = outputs.logits.detach()
for j in range(logits.size(0)):
probs = F.softmax(logits[j], -1)
label = batch["labels"]
output_dict = {
'index': args.per_device_train_batch_size * step + j,
'true': label[j].item(),
'pred': logits[j].argmax().item(),
'conf': probs.max().item(),
'logits': logits[j].cpu().numpy().tolist(),
'probs': probs.cpu().numpy().tolist(),
}
output_dicts.append(output_dict)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(label),
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
# If training seems wrong here, abort.
if eval_metric['accuracy'] < 0.4:
sys.exit(0)
# Saving model if log_epoch is true
# if args.log_epoch:
# epoch_output_dir = os.path.join(args.output_dir, f"epoch={epoch}")
# epoch_conf_dir = os.path.join(args.conf_dir, f"epoch={epoch}")
# check_dir(epoch_output_dir)
# check_dir(epoch_conf_dir)
# epoch_conf_path = os.path.join(epoch_conf_dir, "res.json")
# accelerator.wait_for_everyone()
# unwrapped_model = accelerator.unwrap_model(model)
# torch.save(unwrapped_model.state_dict(), os.path.join(epoch_output_dir, "model.ckpt"))
# with open(epoch_conf_path, 'w+') as f:
# for i, output_dict in enumerate(output_dicts):
# output_dict_str = json.dumps(output_dict)
# f.write(f'{output_dict_str}\n')
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
check_dir(args.conf_dir)
output_path = os.path.join(args.conf_dir, 'res.json')
with open(output_path, 'w+') as f:
for i, output_dict in enumerate(output_dicts):
output_dict_str = json.dumps(output_dict)
f.write(f'{output_dict_str}\n')
# Evaluation, we use one process only.
output_dicts = []
if accelerator.is_local_main_process:
model.eval()
for step, batch in enumerate(tqdm(eval_dataloader)):
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
logits = outputs.logits.detach()
for j in range(logits.size(0)):
probs = F.softmax(logits[j], -1)
label = batch["labels"]
output_dict = {
'index': args.per_device_train_batch_size * step + j,
'true': label[j].item(),
'pred': logits[j].argmax().item(),
'conf': probs.max().item(),
'logits': logits[j].cpu().numpy().tolist(),
'probs': probs.cpu().numpy().tolist(),
}
output_dicts.append(output_dict)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
print(eval_metric)
check_dir(args.conf_dir)
output_path = os.path.join(args.conf_dir, 'res.json')
print(f'writing outputs to \'{output_path}\'')
with open(output_path, 'w+') as f:
for i, output_dict in enumerate(output_dicts):
output_dict_str = json.dumps(output_dict)
f.write(f'{output_dict_str}\n')
if __name__ == "__main__":
main()