-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_mc_ChildTuning.py
749 lines (679 loc) · 31.9 KB
/
run_mc_ChildTuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning a 🤗 Transformers model on multiple choice relying on the accelerate library without using a Trainer.
Modified from https://github.com/alibaba/AliceMind/tree/main/ChildTuning
"""
# You can also adapt this script on your own multiple choice task. Pointers for this are left as comments.
import argparse
import json
import logging
import math
import os
import sys
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from typing import Optional, Union
from tqdm import tqdm
import numpy as np
import datasets
import torch
import torch.nn.functional as F
from datasets import load_dataset, load_metric, load_from_disk, Value, ClassLabel
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from huggingface_hub import Repository
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AdamW,
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
PreTrainedTokenizerBase,
SchedulerType,
default_data_collator,
get_scheduler,
)
from transformers.file_utils import PaddingStrategy, get_full_repo_name
from utils import check_dir
from models.child_tuning import ChildTuningAdamW
logger = logging.getLogger(__name__)
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--conf_dir", type=str, default=None, help="Where to store the final model logits.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
parser.add_argument(
"--debug",
action="store_true",
help="Activate debug mode and run training only with a subset of data.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
parser.add_argument("--do_train", action="store_true")
parser.add_argument("--eval_split", type=str, default="val")
parser.add_argument("--ckpt_path", type=str, default=None)
parser.add_argument("--delta", type=str, default=None)
parser.add_argument("--delta_config", type=str, default="")
# ChildTuning
parser.add_argument("--mode", type=str, default="ChildTuning-F", choices=["ChildTuning-F", "ChildTuning-D"])
parser.add_argument("--reserve_p", type=float, default=0.0)
args = parser.parse_args()
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [
[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
]
flattened_features = list(chain(*flattened_features))
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Un-flatten
batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
# Add back labels
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
return batch
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
# if accelerator.is_main_process:
# check_dir(args.output_dir)
# check_dir(args.conf_dir)
# accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
raw_datasets = load_from_disk(f'./data/processed_data/{args.dataset_name}')
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# Trim a number of training examples
if args.debug:
for split in raw_datasets.keys():
raw_datasets[split] = raw_datasets[split].select(range(100))
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.model_name_or_path)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
model = AutoModelForMultipleChoice.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMultipleChoice.from_config(config)
model.resize_token_embeddings(len(tokenizer))
if args.delta is not None:
from opendelta import AutoDeltaConfig
from opendelta.auto_delta import AutoDeltaModel
delta_args = json.loads(Path(args.delta_config).read_text())
delta_config = AutoDeltaConfig.from_dict(delta_args)
delta_model = AutoDeltaModel.from_config(delta_config, backbone_model=model)
delta_model.freeze_module(set_state_dict = True)
delta_model.log(delta_ratio=True, trainable_ratio=True, visualization=True)
if args.ckpt_path is not None:
model.load_state_dict(torch.load(os.path.join(args.ckpt_path, "model.ckpt")), strict=False)
# Preprocessing the datasets.
# First we tokenize all the texts.
padding = "max_length" if args.pad_to_max_length else False
# When using your own dataset or a different dataset from swag, you will probably need to change this.
#NOTE: Only Swag & Hellaswag are supported now.
if args.dataset_name == 'swag':
ending_names = [f"ending{i}" for i in range(4)]
context_name = "sent1"
question_header_name = "sent2"
def get_sentences(examples):
first_sentences = [[context] * 4 for context in examples[context_name]]
question_headers = examples[question_header_name]
second_sentences = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
]
return first_sentences, second_sentences
elif args.dataset_name =="hellaswag":
ending_names = "endings"
context_name = "ctx_a"
question_header_name = "ctx_b"
def get_sentences(examples):
first_sentences = [[context] * 4 for context in examples[context_name]]
question_headers = examples[question_header_name]
second_sentences = [
[f"{header} {end}" for end in examples[ending_names][i]] for i, header in enumerate(question_headers)
]
return first_sentences, second_sentences
else:
raise NotImplementedError()
label_column_name = "label" if "label" in column_names else "labels"
if args.dataset_name == "hellaswag":
raw_datasets["train"] = raw_datasets["train"].cast_column(label_column_name, ClassLabel(num_classes=4, names=['0', '1', '2', '3'], id=None))
raw_datasets["validation"] = raw_datasets["validation"].cast_column(label_column_name, ClassLabel(num_classes=4, names=['0', '1', '2', '3'], id=None))
raw_datasets["test"] = raw_datasets["test"].cast_column(label_column_name, ClassLabel(num_classes=4, names=['0', '1', '2', '3'], id=None))
def preprocess_function(examples):
first_sentences, second_sentences = get_sentences(examples)
labels = examples[label_column_name]
# Flatten out
first_sentences = list(chain(*first_sentences))
second_sentences = list(chain(*second_sentences))
# Tokenize
tokenized_examples = tokenizer(
first_sentences,
second_sentences,
max_length=args.max_length,
padding=padding,
truncation=True,
)
# Un-flatten
tokenized_inputs = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
tokenized_inputs["labels"] = labels
return tokenized_inputs
with accelerator.main_process_first():
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
)
train_dataset = processed_datasets["train"]
# eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
# eval_dataset = processed_datasets["validation"]
if args.eval_split == "val":
eval_dataset = processed_datasets["validation"]
elif args.eval_split == "test":
eval_dataset = processed_datasets["test"]
else:
raise NotImplementedError()
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorForMultipleChoice(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = ChildTuningAdamW(optimizer_grouped_parameters, lr=args.learning_rate, mode=args.mode, reserve_p=args.reserve_p)
# Use the device given by the `accelerator` object.
device = accelerator.device
model.to(device)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Metrics
metric = load_metric("./metrics/accuracy")
if args.mode == "ChildTuning-D":
logger.info("***** Calculate Fisher Information *****")
gradient_mask = dict()
for name, params in model.named_parameters():
if 'layer' in name and 'pooler' not in name:
gradient_mask[params] = params.new_zeros(params.size())
N = len(train_dataloader)
model.train()
progress_bar = tqdm(range(N), disable=not accelerator.is_local_main_process)
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
for name, params in model.named_parameters():
if 'layer' in name and 'pooler' not in name:
# torch.nn.utils.clip_grad_norm_(params, self.args.max_grad_norm)
gradient_mask[params] += (params.grad ** 2) / N
model.zero_grad()
progress_bar.update(1)
# Numpy
r = None
for k, v in gradient_mask.items():
v = v.view(-1).cpu().numpy()
if r is None:
r = v
else:
r = np.append(r, v)
polar = np.percentile(r, (1-args.reserve_p)*100)
for k in gradient_mask:
gradient_mask[k] = gradient_mask[k] >= polar
logger.info(f"Polar => {polar}")
accelerator.wait_for_everyone()
optimizer.optimizer.set_gradient_mask(gradient_mask) # May be there is a better way to do that...
# Train!
if args.do_train:
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
# torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
output_dicts = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
logits = outputs.logits.detach()
for j in range(logits.size(0)):
probs = F.softmax(logits[j], -1)
label = batch["labels"]
output_dict = {
'index': args.per_device_train_batch_size * step + j,
'true': label[j].item(),
'pred': logits[j].argmax().item(),
'conf': probs.max().item(),
'logits': logits[j].cpu().numpy().tolist(),
'probs': probs.cpu().numpy().tolist(),
}
output_dicts.append(output_dict)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
accelerator.print(f"epoch {epoch}: {eval_metric}")
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.checkpointing_steps == "epoch":
epoch_output_dir = os.path.join(args.output_dir, f"epoch={epoch}")
epoch_conf_dir = os.path.join(args.conf_dir, f"epoch={epoch}")
check_dir(epoch_output_dir)
check_dir(epoch_conf_dir)
epoch_conf_path = os.path.join(epoch_conf_dir, "res.json")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if args.delta is not None:
torch.save(unwrapped_model.state_dict(), os.path.join(epoch_output_dir, "model.ckpt"))
else:
unwrapped_model.save_pretrained(epoch_output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(epoch_output_dir)
with open(epoch_conf_path, 'w+') as f:
for i, output_dict in enumerate(output_dicts):
output_dict_str = json.dumps(output_dict)
f.write(f'{output_dict_str}\n')
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if args.delta is not None:
check_dir(args.output_dir)
torch.save(unwrapped_model.state_dict(), os.path.join(args.output_dir, "model.ckpt"))
else:
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
# Evaluation, we use one process only.
output_dicts = []
if accelerator.is_local_main_process:
model.eval()
for step, batch in enumerate(tqdm(eval_dataloader)):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
logits = outputs.logits.detach()
for j in range(logits.size(0)):
probs = F.softmax(logits[j], -1)
label = batch["labels"]
output_dict = {
'index': args.per_device_train_batch_size * step + j,
'true': label[j].item(),
'pred': logits[j].argmax().item(),
'conf': probs.max().item(),
'logits': logits[j].cpu().numpy().tolist(),
'probs': probs.cpu().numpy().tolist(),
}
output_dicts.append(output_dict)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
print(eval_metric)
check_dir(args.conf_dir)
output_path = os.path.join(args.conf_dir, 'res.json')
print(f'writing outputs to \'{output_path}\'')
with open(output_path, 'w+') as f:
for i, output_dict in enumerate(output_dicts):
output_dict_str = json.dumps(output_dict)
f.write(f'{output_dict_str}\n')
if __name__ == "__main__":
main()