-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
623 lines (570 loc) · 31.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import torch
import random
import numpy as np
from config import global_config as cfg
from reader import CamRest676Reader, get_glove_matrix
from reader import MultiWOZReader
from tsd_net import TSD, cuda_, nan, Paraphrase
from torch.optim import Adam, RMSprop
from torch.autograd import Variable
from reader import pad_sequences
import argparse, time
from nltk.tokenize import word_tokenize
from metric import CamRestEvaluator, MultiWOZEvaluator
import logging
from data_analysis import realization, slots_match, realization_multiwoz, slots_match_multiwoz
from nltk.translate.bleu_score import sentence_bleu
from filter_eval import filter_punct
from tsd_net import get_sparse_input_aug, get_sparse_selective_input
class Model:
def __init__(self, dataset):
reader_dict = {
'camrest': CamRest676Reader,
'multiwoz': MultiWOZReader,
}
model_dict = {
'TSD':TSD
}
evaluator_dict = {
'camrest': CamRestEvaluator,
'multiwoz': MultiWOZEvaluator,
}
self.reader = reader_dict[dataset]()
self.m_para = Paraphrase(embed_size=cfg.para_embedding_size,
hidden_size=cfg.para_hidden_size,
vocab_size=cfg.vocab_size,
layer_num=cfg.layer_num,
dropout_rate=0.0,
max_para_len=cfg.max_para_len,
eos_token_idx=self.reader.vocab.encode('EOS_U'),
vocab=self.reader.vocab,
teacher_force=cfg.teacher_force,
reader=self.reader,
a_length=cfg.a_length)
self.m = model_dict[cfg.m](embed_size=cfg.embedding_size,
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
layer_num=cfg.layer_num,
dropout_rate=cfg.dropout_rate,
z_length=cfg.z_length,
max_ts=cfg.max_ts,
beam_search=cfg.beam_search,
beam_size=cfg.beam_size,
eos_token_idx=self.reader.vocab.encode('EOS_M'),
vocab=self.reader.vocab,
teacher_force=cfg.teacher_force,
degree_size=cfg.degree_size,
reader=self.reader,
para_hidden_size=cfg.para_hidden_size)
self.EV = evaluator_dict[dataset] # evaluator class
if cfg.cuda:
self.m = self.m.cuda()
self.m_para = self.m_para.cuda()
self.optim = Adam(lr=cfg.lr, params=[{'params': filter(lambda x: x.requires_grad, self.m.parameters())},
{'params': filter(lambda x: x.requires_grad, self.m_para.parameters())}],
weight_decay=5e-5)
# self.optim_para = Adam(lr=cfg.lr_para, params=filter(lambda x: x.requires_grad, self.m_para.parameters()),
# weight_decay=5e-5)
self.base_epoch = -1
def _convert_batch_para(self, py_batch, mode, prev_a_py=None):
u_input_np = pad_sequences(py_batch['delex_user'], cfg.max_para_len, padding='post',
truncating='pre').transpose((1, 0))
delex_para_input_np = pad_sequences(py_batch['delex_para'], cfg.max_para_len, padding='post',
truncating='pre').transpose((1, 0))
u_len = np.array(py_batch['delex_u_len'])
u_input = cuda_(Variable(torch.from_numpy(u_input_np).long()))
delex_para_input = cuda_(Variable(torch.from_numpy(delex_para_input_np).long()))
if mode == 'test':
if prev_a_py:
for i in range(len(prev_a_py)):
eob = self.reader.vocab.encode('EOS_A')
if eob in prev_a_py[i] and prev_a_py[i].index(eob) != len(prev_a_py[i]) - 1:
idx = prev_a_py[i].index(eob)
prev_a_py[i] = prev_a_py[i][:idx + 1]
else:
prev_a_py[i] = [eob]
for j, word in enumerate(prev_a_py[i]):
if word >= cfg.vocab_size or word < 0:
prev_a_py[i][j] = 2 #unk
else:
prev_a_py = py_batch['pre_dial_act']
prev_dial_act_input_np = pad_sequences(prev_a_py, cfg.a_length, padding='post', truncating='pre').transpose((1, 0))
prev_dial_act_input = cuda_(Variable(torch.from_numpy(prev_dial_act_input_np).long()))
else:
prev_dial_act_input_np = pad_sequences(py_batch['pre_dial_act'], cfg.a_length, padding='post',
truncating='pre').transpose((1, 0))
prev_dial_act_input = cuda_(Variable(torch.from_numpy(prev_dial_act_input_np).long()))
return u_input, u_input_np, delex_para_input, delex_para_input_np, u_len, prev_dial_act_input
def _get_final_input(self, py_batch, para_results, epoch):
user = py_batch['user']
para = py_batch['para']
batch_size = len(py_batch['user'])
final_user = []
final_u_len = []
weight = 1.0
good = 0
total = 0
if epoch % 2 == 0:
for i in range(batch_size):
final_user.append(user[i])
final_u_len.append(len(user[i]))
else:
user_delex = py_batch['delex_user']
pre_sys = py_batch['pre_response']
slu = []
replace = []
user_utter = []
delex_user_utter = []
para_utter = []
if cfg.dataset == "camrest":
slu = py_batch['realize_slu']
replace = py_batch['replace']
else:
slu = py_batch['realize_slu']
if cfg.dataset == "camrest":
gen_para, success = realization(para_results, slu, replace)
else:
gen_para, success = realization_multiwoz(para_results, slu)
for i in range(batch_size):
user_utter.append(self.reader.vocab.sentence_decode(user[i]).split('EOS_M ')[-1])
delex_user_utter.append(self.reader.vocab.sentence_decode(user_delex[i]).split('EOS_M ')[-1])
para_utter.append(self.reader.vocab.sentence_decode(para[i]).split('EOS_M ')[-1])
if cfg.dataset == "camrest":
slots_match_success = slots_match(delex_user_utter, para_results)
else:
slots_match_success = slots_match_multiwoz(delex_user_utter, para_results)
for i in range(batch_size):
s1 = filter_punct(user_utter[i]).split(" ")
s2 = filter_punct(para_utter[i]).split(" ")
s = filter_punct(gen_para[i]).split(" ")
if success[i] and slots_match_success[i] and sentence_bleu([s1, s2], s) > cfg.bleu_threshold:
good += 1
select = word_tokenize(gen_para[i]) + ['EOS_U']
select = self.reader.vocab.sentence_encode(select)
final = pre_sys[i] + select
final_user.append(final)
final_u_len.append(len(final))
else:
final_user.append(user[i])
final_u_len.append(len(user[i]))
total += 1
weight = weight * good / total
py_batch['final_user'] = final_user
py_batch['final_u_len'] = final_u_len
return py_batch, weight
def _convert_batch(self, py_batch, prev_z_py=None, mode="train"):
domain = py_batch['domain']
if mode == "train":
u_input_py = py_batch['final_user']
u_len_py = py_batch['final_u_len']
else:
u_input_py = py_batch['user']
u_len_py = py_batch['u_len']
kw_ret = {}
if cfg.prev_z_method == 'concat' and prev_z_py is not None:
for i in range(len(u_input_py)):
eob = self.reader.vocab.encode('EOS_Z2')
if eob in prev_z_py[i] and prev_z_py[i].index(eob) != len(prev_z_py[i]) - 1:
idx = prev_z_py[i].index(eob)
u_input_py[i] = prev_z_py[i][:idx + 1] + u_input_py[i]
else:
u_input_py[i] = prev_z_py[i] + u_input_py[i]
u_len_py[i] = len(u_input_py[i])
for j, word in enumerate(prev_z_py[i]):
if word >= cfg.vocab_size or word < 0:
prev_z_py[i][j] = 2 #unk
elif cfg.prev_z_method == 'separate' and prev_z_py is not None:
for i in range(len(prev_z_py)):
eob = self.reader.vocab.encode('EOS_Z2')
if eob in prev_z_py[i] and prev_z_py[i].index(eob) != len(prev_z_py[i]) - 1:
idx = prev_z_py[i].index(eob)
prev_z_py[i] = prev_z_py[i][:idx + 1]
for j, word in enumerate(prev_z_py[i]):
if word >= cfg.vocab_size:
prev_z_py[i][j] = 2 #unk
prev_z_input_np = pad_sequences(prev_z_py, cfg.max_ts, padding='post', truncating='pre').transpose((1, 0))
prev_z_len = np.array([len(_) for _ in prev_z_py])
prev_z_input = cuda_(Variable(torch.from_numpy(prev_z_input_np).long()))
kw_ret['prev_z_len'] = prev_z_len
kw_ret['prev_z_input'] = prev_z_input
kw_ret['prev_z_input_np'] = prev_z_input_np
degree_input_np = np.array(py_batch['degree'])
u_input_np = pad_sequences(u_input_py, cfg.max_ts, padding='post', truncating='pre').transpose((1, 0))
z_input_np = pad_sequences(py_batch['bspan'], padding='post').transpose((1, 0))
m_input_np = pad_sequences(py_batch['response'], cfg.max_ts, padding='post', truncating='post').transpose(
(1, 0))
u_len = np.array(u_len_py)
m_len = np.array(py_batch['m_len'])
degree_input = cuda_(Variable(torch.from_numpy(degree_input_np).float()))
u_input = cuda_(Variable(torch.from_numpy(u_input_np).long()))
z_input = cuda_(Variable(torch.from_numpy(z_input_np).long()))
m_input = cuda_(Variable(torch.from_numpy(m_input_np).long()))
kw_ret['z_input_np'] = z_input_np
return u_input, u_input_np, z_input, m_input, m_input_np, u_len, m_len, degree_input, kw_ret, domain
def train(self):
lr = cfg.lr
lr_para = cfg.lr_para
prev_min_loss, early_stop_count \
= 1 << 30, cfg.early_stop_count
train_time = 0
for epoch in range(cfg.epoch_num):
sw = time.time()
if epoch <= self.base_epoch:
continue
self.training_adjust(epoch)
self.m.self_adjust(epoch)
self.m_para.self_adjust(epoch)
sup_loss = 0
sup_cnt = 0
data_iterator = self.reader.mini_batch_iterator('train')
optim = self.optim
# optim_para = self.optim_para
for iter_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
for turn_num, turn_batch in enumerate(dial_batch):
fail = 0
if not turn_batch['delex_user']:
fail = 1
for utter in turn_batch['delex_user']:
if not utter:
fail = 1
if fail:
break
if cfg.truncated:
logging.debug('iter %d turn %d' % (iter_num, turn_num))
optim.zero_grad()
# optim_para.zero_grad()
u_input, u_input_np, para_input, para_input_np, u_len, prev_act_input \
= self._convert_batch_para(turn_batch, 'train')
sparse_u_input_para = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
para_dec_outs, para_idx, loss_para = self.m_para(u_input=u_input,
para_input=para_input,
prev_act_input=prev_act_input,
u_input_np=u_input_np,
u_len=u_len, mode="train",
sparse_u_input_para=sparse_u_input_para)
para_results = self.reader.get_para_result(turn_batch, para_idx)
turn_batch, weight = self._get_final_input(turn_batch, para_results, epoch)
final_u_input, final_u_input_np, z_input, m_input, m_input_np, final_u_len, \
m_len, degree_input, kw_ret, domain \
= self._convert_batch(turn_batch, prev_z, "train")
sparse_u_input_bspan = Variable(get_sparse_input_aug(final_u_input_np), requires_grad=False)
z_input_np = z_input.cpu().data.numpy()
sparse_u_input_response = Variable(get_sparse_selective_input(z_input_np, self.reader.vocab),
requires_grad=False)
loss, pr_loss, m_loss, turn_states = self.m(u_input=final_u_input, z_input=z_input,
m_input=m_input, domain=domain,
degree_input=degree_input,
u_input_np=final_u_input_np,
m_input_np=m_input_np,
turn_states=turn_states,
para_dec=para_dec_outs,
para_input_np=para_input_np,
sparse_bspan=sparse_u_input_bspan,
sparse_response=sparse_u_input_response,
u_len=final_u_len, m_len=m_len, mode='train', **kw_ret)
total_loss = loss_para + loss
total_loss.backward(retain_graph=turn_num != len(dial_batch) - 1)
grad = torch.nn.utils.clip_grad_norm_(self.m.parameters(), 5.0)
torch.nn.utils.clip_grad_norm_(self.m_para.parameters(), 5.0)
optim.step()
# optim_para.step()
sup_loss += total_loss.cpu().item()
sup_cnt += 1
logging.debug(
'para_loss:{} loss:{} pr_loss:{} m_loss:{} grad:{}'.format(loss_para.item(),
loss.item(),
pr_loss.item(),
m_loss.item(),
grad))
prev_z = turn_batch['bspan']
epoch_sup_loss = sup_loss / (sup_cnt + 1e-8)
train_time += time.time() - sw
logging.info('Traning time: {}'.format(train_time))
logging.info('avg training loss in epoch %d sup:%f' % (epoch, epoch_sup_loss))
valid_sup_loss, valid_unsup_loss = self.validate()
logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
logging.info('time for epoch %d: %f' % (epoch, time.time() - sw))
valid_loss = valid_sup_loss + valid_unsup_loss
self.save_model(epoch)
self.save_model_para(epoch)
if valid_loss <= prev_min_loss:
prev_min_loss = valid_loss
early_stop_count = cfg.early_stop_count
else:
prev_min_loss = valid_loss
early_stop_count -= 1
if not early_stop_count:
lr *= cfg.lr_decay
lr_para *= cfg.lr_decay
if lr < 0.08 * cfg.lr:
break
self.optim = Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()),
weight_decay=5e-5)
self.optim_para = Adam(lr=lr_para, params=filter(lambda x: x.requires_grad,
self.m_para.parameters()), weight_decay=5e-5)
logging.info('early stop count out, learning rate %f' % lr)
early_stop_count = cfg.early_stop_count
def eval(self, data='test'):
self.m.eval()
self.reader.result_file = None
self.reader.para_result_file = None
data_iterator = self.reader.mini_batch_iterator(data)
mode = 'test' if not cfg.pretrain else 'pretrain_test'
for batch_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
prev_act = None
for turn_num, turn_batch in enumerate(dial_batch):
u_input, u_input_np, para_input, para_input_np, u_len, prev_act_input \
= self._convert_batch_para(turn_batch, 'test', prev_act)
sparse_u_input_para = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
para_dec_outs, para_idx, prev_act_idx = self.m_para(u_input=u_input,
para_input=para_input,
u_input_np=u_input_np,
u_len=u_len, mode=mode,
prev_act_input=prev_act_input,
sparse_u_input_para=sparse_u_input_para)
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret, domain \
= self._convert_batch(turn_batch, prev_z, mode=mode)
sparse_u_input_bspan = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
m_idx, z_idx, turn_states = self.m(mode=mode, u_input=u_input, u_len=u_len, z_input=z_input,
m_input=m_input, domain=domain,
para_dec=para_dec_outs,
para_input_np=para_input_np,
sparse_bspan=sparse_u_input_bspan,
sparse_response=None,
degree_input=degree_input, u_input_np=u_input_np,
m_input_np=m_input_np, m_len=m_len, turn_states=turn_states,
dial_id=turn_batch['dial_id'], **kw_ret)
self.reader.wrap_result(turn_batch, m_idx, z_idx, prev_z=prev_z)
self.reader.save_result_para(turn_batch, para_idx)
prev_z = z_idx
prev_act = prev_act_idx
self.reader.result_file.close()
self.reader.para_result_file.close()
ev = self.EV(result_path=cfg.result_path)
res = ev.run_metrics()
self.m.train()
return res
def validate(self, data='dev'):
self.m.eval()
data_iterator = self.reader.mini_batch_iterator(data)
sup_loss, unsup_loss = 0, 0
sup_cnt, unsup_cnt = 0, 0
for dial_batch in data_iterator:
turn_states = {}
for turn_num, turn_batch in enumerate(dial_batch):
u_input, u_input_np, para_input, para_input_np, u_len, prev_act_input \
= self._convert_batch_para(turn_batch, 'train')
sparse_u_input_para = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
para_dec_outs, _, loss_para = self.m_para(u_input=u_input,
para_input=para_input,
u_input_np=u_input_np,
u_len=u_len, mode="train",
prev_act_input=prev_act_input,
sparse_u_input_para=sparse_u_input_para)
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret, domain \
= self._convert_batch(turn_batch, mode="val")
sparse_u_input_bspan = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
z_input_np = z_input.cpu().data.numpy()
sparse_u_input_response = Variable(get_sparse_selective_input(z_input_np, self.reader.vocab),
requires_grad=False)
loss, pr_loss, m_loss, turn_states = self.m(u_input=u_input, z_input=z_input,
m_input=m_input, domain=domain,
turn_states=turn_states,
degree_input=degree_input,
para_dec=para_dec_outs,
para_input_np=para_input_np,
sparse_bspan=sparse_u_input_bspan,
sparse_response=sparse_u_input_response,
u_input_np=u_input_np, m_input_np=m_input_np,
u_len=u_len, m_len=m_len, mode='train', **kw_ret)
total_loss = loss + loss_para
sup_loss += total_loss.item()
sup_cnt += 1
logging.debug(
'para_loss:{} loss:{} pr_loss:{} m_loss:{}'.format(loss_para.item(),loss.item(),
pr_loss.item(), m_loss.item()))
sup_loss /= (sup_cnt + 1e-8)
unsup_loss /= (unsup_cnt + 1e-8)
self.m.train()
print('result preview...')
self.eval()
return sup_loss, unsup_loss
def reinforce_tune(self):
lr = cfg.lr
lr_para = cfg.lr_para
self.optim = Adam(lr=cfg.lr, params=[{'params': filter(lambda x: x.requires_grad, self.m.parameters())},
{'params': filter(lambda x: x.requires_grad, self.m_para.parameters())}],
weight_decay=5e-5)
# self.optim_para = Adam(lr=cfg.lr_para, params=filter(lambda x: x.requires_grad, self.m_para.parameters()))
prev_min_loss, early_stop_count = 1 << 30, cfg.early_stop_count
for epoch in range(self.base_epoch + cfg.rl_epoch_num + 1):
mode = 'rl'
if epoch <= self.base_epoch:
continue
epoch_loss, cnt = 0,0
data_iterator = self.reader.mini_batch_iterator('train')
optim = self.optim #Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()), weight_decay=0)
# optim_para = self.optim_para
for iter_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
for turn_num, turn_batch in enumerate(dial_batch):
optim.zero_grad()
# optim_para.zero_grad()
u_input, u_input_np, para_input, para_input_np, u_len, prev_act_input \
= self._convert_batch_para(turn_batch, 'rl')
sparse_u_input_para = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
para_dec_outs, _, _ = self.m_para(u_input=u_input,
para_input=para_input,
u_input_np=u_input_np,
prev_act_input=prev_act_input,
u_len=u_len, mode="rl",
sparse_u_input_para=sparse_u_input_para)
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret, domain\
= self._convert_batch(turn_batch, prev_z, mode="rl")
sparse_u_input_bspan = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
loss_rl = self.m(u_input=u_input, z_input=z_input,
m_input=m_input, domain=domain,
degree_input=degree_input,
u_input_np=u_input_np,
m_input_np=m_input_np,
turn_states=turn_states,
para_dec=para_dec_outs,
para_input_np=para_input_np,
sparse_bspan=sparse_u_input_bspan,
sparse_response=None,
dial_id=turn_batch['dial_id'],
u_len=u_len, m_len=m_len, mode=mode, **kw_ret)
if loss_rl is not None:
loss = loss_rl #+ loss_mle * 0.1
loss.backward()
grad = torch.nn.utils.clip_grad_norm(self.m.parameters(), 2.0)
optim.step()
epoch_loss += loss.cpu().item()
cnt += 1
logging.debug('{} loss {}, grad:{}'.format(mode, loss.item(), grad))
prev_z = turn_batch['bspan']
epoch_sup_loss = epoch_loss / (cnt + 1e-8)
logging.info('avg training loss in epoch %d sup:%f' % (epoch, epoch_sup_loss))
valid_sup_loss, valid_unsup_loss = self.validate()
logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
valid_loss = valid_sup_loss + valid_unsup_loss
# self.save_model(epoch)
if valid_loss <= prev_min_loss:
self.save_model(epoch)
prev_min_loss = valid_loss
early_stop_count = cfg.early_stop_count
else:
early_stop_count -= 1
if not early_stop_count:
lr *= cfg.lr_decay
if lr < 0.1 * cfg.lr:
break
logging.info('early stop count out, learning rate %f' % lr)
early_stop_count = cfg.early_stop_count
def save_model_para(self, epoch, path=None, critical=False):
if not path:
path = cfg.para_path + '_' + str(epoch) + '.pkl'
if critical:
path += '.final'
all_state = {'lstd': self.m_para.state_dict(),
'config': cfg.__dict__,
'epoch': epoch}
torch.save(all_state, path)
def save_model(self, epoch, path=None, critical=False):
if not path:
path = cfg.model_path + '_' + str(epoch) + '.pkl'
if critical:
path += '.final'
all_state = {'lstd': self.m.state_dict(),
'config': cfg.__dict__,
'epoch': epoch}
torch.save(all_state, path)
def load_model(self, epoch, path=None):
if not path:
path = cfg.model_path + '_' + str(epoch) + '.pkl'
all_state = torch.load(path, map_location='cpu')
self.m.load_state_dict(all_state['lstd'])
self.base_epoch = epoch
def load_model_para(self, epoch, path=None):
if not path:
path = cfg.para_path + '_' + str(epoch) + '.pkl'
all_state = torch.load(path, map_location='cpu')
self.m_para.load_state_dict(all_state['lstd'])
def training_adjust(self, epoch):
return
def freeze_module(self, module):
for param in module.parameters():
param.requires_grad = False
def unfreeze_module(self, module):
for param in module.parameters():
param.requires_grad = True
def load_glove_embedding(self, freeze=False):
initial_arr = self.m.u_encoder.embedding.weight.data.cpu().numpy()
embedding_arr = torch.from_numpy(get_glove_matrix(self.reader.vocab, initial_arr))
self.m.u_encoder.embedding.weight.data.copy_(embedding_arr)
self.m.z_decoder.emb.weight.data.copy_(embedding_arr)
self.m.m_decoder.emb.weight.data.copy_(embedding_arr)
def count_params(self):
dialogue_module_parameters = filter(lambda p: p.requires_grad, self.m.parameters())
paraphrase_module_parameters = filter(lambda p: p.requires_grad, self.m_para.parameters())
dial_param_cnt = sum([np.prod(p.size()) for p in dialogue_module_parameters])
para_param_cnt = sum([np.prod(p.size()) for p in paraphrase_module_parameters])
param_cnt = dial_param_cnt + para_param_cnt
print('total trainable params: %d' % param_cnt)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-mode')
parser.add_argument('-model')
parser.add_argument('-cfg', nargs='*')
args = parser.parse_args()
cfg.init_handler(args.model)
cfg.dataset = args.model.split('-')[-1]
if args.cfg:
for pair in args.cfg:
k, v = tuple(pair.split('='))
dtype = type(getattr(cfg, k))
if dtype == type(None):
raise ValueError()
if dtype is bool:
v = False if v == 'False' else True
else:
v = dtype(v)
setattr(cfg, k, v)
logging.info(str(cfg))
if cfg.cuda:
torch.cuda.set_device(cfg.cuda_device)
logging.info('Device: {}'.format(torch.cuda.current_device()))
cfg.mode = args.mode
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
m = Model(args.model.split('-')[-1])
m.count_params()
if args.mode == 'train':
m.load_glove_embedding()
# m.load_model(cfg.start_epoch)
# m.load_model_para(cfg.para_start_epoch)
m.train()
elif args.mode == 'adjust':
m.load_model(cfg.start_epoch)
m.load_model_para(cfg.para_start_epoch)
m.train()
elif args.mode == 'test':
m.load_model(cfg.start_epoch)
m.load_model_para(cfg.para_start_epoch)
m.eval()
elif args.mode == 'rl':
m.load_model(cfg.start_epoch)
m.load_model_para(cfg.para_start_epoch)
m.reinforce_tune()
if __name__ == '__main__':
main()