You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have always an error
ValueError: Invalid parameter n_estimators for estimator Pipeline(memory=None,
steps=[('umap', UMAP(a=None, angular_rp_forest=False, b=None, init='spectral',
learning_rate=1.0, local_connectivity=1.0, metric='euclidean',
metric_kwds=None, min_dist=0.1, n_components=2, n_epochs=None,
n_neighbors=15, negative_sample_rate=5, random_state=456,
repulsion_strength=1.0, s...ax_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0))]). Check the list of available parameters with estimator.get_params().keys().
my code
from sklearn.model_selection import RandomizedSearchCV
umap2 = umap.UMAP(random_state=456)
svc=LinearSVC(dual=False)
pipeline = Pipeline([("umap", umap2),
("svc", svc)])
params_grid_pipeline = {"umap__n_neighbors": [5,20],
"umap__n_components": [15, 25, 50],
"svc__C": [10**k for k in range(-3, 4)],
'svc__random_state':[43]}
If you read the documentation of the HyperbandSearchCV class, you will see that there is an argument resource_param that you need to set. It tells the method which parameter corresponds to the cost parameter for hyperband, and is by default set to n_estimators. You'll have to change it to whatever makes sense for your method
Hello,
I have always an error
ValueError: Invalid parameter n_estimators for estimator Pipeline(memory=None,
steps=[('umap', UMAP(a=None, angular_rp_forest=False, b=None, init='spectral',
learning_rate=1.0, local_connectivity=1.0, metric='euclidean',
metric_kwds=None, min_dist=0.1, n_components=2, n_epochs=None,
n_neighbors=15, negative_sample_rate=5, random_state=456,
repulsion_strength=1.0, s...ax_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0))]). Check the list of available parameters with
estimator.get_params().keys()
.my code
from sklearn.model_selection import RandomizedSearchCV
umap2 = umap.UMAP(random_state=456)
svc=LinearSVC(dual=False)
pipeline = Pipeline([("umap", umap2),
("svc", svc)])
params_grid_pipeline = {"umap__n_neighbors": [5,20],
"umap__n_components": [15, 25, 50],
"svc__C": [10**k for k in range(-3, 4)],
'svc__random_state':[43]}
gs=HyperbandSearchCV(estimator=pipeline, param_distributions=params_grid_pipeline, scoring='recall', cv=10, verbose=1,n_jobs = 5)
gs = gs.fit(X_train.values,y_train.values.ravel())
My params are good
The text was updated successfully, but these errors were encountered: