forked from microsoft/presidio-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflair_train.py
239 lines (201 loc) · 8.15 KB
/
flair_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from typing import List
import pandas as pd
try:
from flair.data import Corpus, Sentence
from flair.datasets import ColumnCorpus
from flair.embeddings import (
TokenEmbeddings,
WordEmbeddings,
StackedEmbeddings,
FlairEmbeddings,
TransformerWordEmbeddings,
)
from flair.models import SequenceTagger
from flair.trainers import ModelTrainer
except ImportError:
print("Flair is not installed")
from presidio_evaluator import InputSample
from os import path
class FlairTrainer:
"""
Helper class for training Flair models
"""
@staticmethod
def to_flair_row(text: str, pos: str, label: str) -> str:
"""
Turn text, part of speech and label into one row.
:return: str
"""
return "{} {} {}".format(text, pos, label)
def to_flair(self, df: pd.DataFrame, outfile: str = "flair_train.txt") -> None:
"""Translate a pd.DataFrame to a flair dataset."""
sentence = 0
flair = []
for row in df.itertuples():
if row.sentence != sentence:
sentence += 1
flair.append("")
else:
flair.append(self.to_flair_row(row.text, row.pos, row.label))
if outfile:
with open(outfile, "w", encoding="utf-8") as f:
for item in flair:
f.write("{}\n".format(item))
def create_flair_corpus(
self, train_samples_path, test_samples_path, val_samples_path
):
"""
Create a flair Corpus object and saive it to train, test, validation files.
:param train_samples_path: Path to train samples
:param test_samples_path: Path to test samples
:param val_samples_path: Path to validation samples
:return:
"""
if not path.exists("flair_train.txt"):
train_samples = InputSample.read_dataset_json(train_samples_path)
train_tagged = [sample for sample in train_samples if len(sample.spans) > 0]
print(
f"Kept {len(train_tagged)} train samples after removal of non-tagged samples"
)
train_data = InputSample.create_conll_dataset(train_tagged)
self.to_flair(train_data, outfile="flair_train.txt")
if not path.exists("flair_test.txt"):
test_samples = InputSample.read_dataset_json(test_samples_path)
test_data = InputSample.create_conll_dataset(test_samples)
self.to_flair(test_data, outfile="flair_test.txt")
if not path.exists("flair_val.txt"):
val_samples = InputSample.read_dataset_json(val_samples_path)
val_data = InputSample.create_conll_dataset(val_samples)
self.to_flair(val_data, outfile="flair_val.txt")
@staticmethod
def read_corpus(data_folder: str, in_memory=True):
"""
Read Flair Corpus object.
:param data_folder: Path with files
:return: Corpus object
"""
columns = {0: "text", 1: "pos", 2: "ner"}
corpus = ColumnCorpus(
data_folder,
columns,
train_file="flair_train.txt",
test_file="flair_val.txt",
dev_file="flair_test.txt",
in_memory=in_memory,
)
return corpus
@staticmethod
def train_with_flair_embeddings(corpus, checkpoint_path=""):
"""
Train a Flair model
:param corpus: Corpus object
:return:
"""
print("Corpus: ", corpus)
# 2. what tag do we want to predict?
tag_type = "ner"
# 3. make the label dictionary from the corpus
tag_dictionary = corpus.make_label_dictionary(
label_type=tag_type, add_unk=False)
print("Tag dictionary: ", tag_dictionary)
# 4. initialize embeddings
embedding_types: List[TokenEmbeddings] = [
WordEmbeddings("glove"),
FlairEmbeddings("news-forward"),
FlairEmbeddings("news-backward"),
]
embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
tagger = SequenceTagger(
hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type,
use_crf=True,
)
# 6. initialize trainer
trainer = ModelTrainer(tagger, corpus)
if checkpoint_path:
trained_model = SequenceTagger.load(checkpoint_path)
trainer.resume(
model=trained_model,
)
else:
path = "resources/taggers/presidio-ner",
trainer.train(
path,
learning_rate=0.1,
mini_batch_size=32,
max_epochs=150,
checkpoint=True,
)
sentence = Sentence("I am from Jerusalem")
# run NER over sentence
tagger.predict(sentence)
print(sentence)
print("The following NER tags are found:")
# iterate over entities and print
for entity in sentence.get_spans("ner"):
print(entity)
@staticmethod
def train_with_transformers(corpus, checkpoint_path=""):
"""
Train a Flair model
:param corpus: Corpus object
:return:
"""
print(corpus)
# 2. what tag do we want to predict?
tag_type = "ner"
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_label_dictionary(
label_type=tag_type, add_unk=False)
print(tag_dictionary)
# 4. initialize fine-tuneable transformer embeddings WITH document context
embedding_types: List[TokenEmbeddings] = [TransformerWordEmbeddings(model="xlm-roberta-large",
layers="-1",
subtoken_pooling="first",
fine_tune=True,
use_context=True,
)]
embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type='ner',
use_crf=False,
use_rnn=False,
reproject_embeddings=False,
)
# 6. initialize trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
if checkpoint_path:
trained_model = SequenceTagger.load(checkpoint_path)
trainer.resume(model=trained_model)
# 7. run fine-tuning
else:
trainer.fine_tune('resources/taggers/presidio-ner',
learning_rate=5.0e-6,
mini_batch_size=4,
max_epochs=20,
mini_batch_chunk_size=1, # remove this parameter to speed up computation if you have a big GPU
checkpoint=True,
)
sentence = Sentence("I am from Jerusalem")
# run NER over sentence
tagger.predict(sentence)
print(sentence)
print("The following NER tags are found:")
# iterate over entities and print
for entity in sentence.get_spans("ner"):
print(entity)
if __name__ == "__main__":
train_samples = "../../data/train_Dec-19-2021.json"
test_samples = "../../data/test_Dec-19-2021.json"
val_samples = "../../data/validation_Dec-19-2021.json"
trainer = FlairTrainer()
trainer.create_flair_corpus(train_samples, test_samples, val_samples)
corpus = trainer.read_corpus("")
trainer.train_with_flair_embeddings(corpus)
trainer.train_with_transformers(corpus)